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Abstract: 

A review is given of developments between 1973 and 1977 that have added the concept of order to general S-matrix principles with 
the aim of constructing a bootstrap theory of hadrons. 
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1. Introduction 

In 1973 there began an S-matrix approach to strong interactions, based on a combination of 
unitarity, topology and Regge behavior, that stirred widespread interest by generating certain of 
the predictions characteristic of quark models while showing the power to go beyond these models. 
The approach evolved from the dual models of the late sixties but was qualitatively distinct in 
recognizing unitarity from the start as an essential constraint. Chan Hong-Mo and collaborators 
[-I, 2] have dubbed the new approach "dual unitarization", while Veneziano [3] has called it the 
"topological expansion". The adjective "topological" recognizes the need to distinguish order 
from disorder - a central feature of the new approach. Four years of work on dual topological 
unitarization (DTU) have produced results sufficiently encouraging as now to warrant a review 
article. Our survey here will describe the general picture as it appears on July I, 1977. Readers 
should bear in mind that the field has not reached a state of maturity and that by the time they 
see this article there may have occurred further important developments. 

To capture the attention of readers not already impressed by the potentialities of a topological 
investigation of unitarity, we call immediate attention to the celebrated but mysterious Okubo- 
Zweig-Iizuka (OZI) rule. The approach characterized as DTU not only generates this rule but 
gives a quantitative account of the extent to which the rule is broken. The accuracy of the rule is 
related to other approximate hadronic regularities such as the limitation of transverse momenta, 
the short-range character of rapidity correlations, the absence of exotics and the exchange de- 
generacy of leading Regge trajectories. All these manifestations of regularity within the hadron S 
matrix, as well as others less well recognized, are seen in the DTU approach as different facets of 
a single principle of order. Imperfections in order - a degree of disorder - is seen as an inevitable 
consequence of unitarity. No arbitrary parameters (such as a gluon coupling constant) are needed 
in DTU to determine the magnitude of imperfection. 

Rather than following an historical line in this review we shall proceed from general S-matrix 
principles, seeking their satisfaction by starting from an approximation where the degree of 
order is maximized. To the extent that we speak of "quarks" the concept is not postulated but 
deduced as a manifestation of order. Our rules for quark-line diagrams will nevertheless turn out 
to be the same as those in approaches where quarks are inserted ab initio. Readers need not share 
the bootstrap viewpoint in order to follow our presentation. The bulk of our review is restricted 
to the meson sector of the S matrix, the extension of topological analysis to baryons and baryonium 
being recent and incompletely understood. We shall see that for mesons the DTU approach 
appears remarkably satisfactory. 

Because the injection of order and or topology into hadron theory is a new departure, we cannot 
derive the essential DTU concepts. The reader should regard these concepts as motivated by the 
experimental observation of order in hadronic phenomena and justified by mathematical self 
consistency. According to the bootstrap hypothesis the nonlinear constraints of unitarity on a 
Poincar6-invariant analytic S matrix are so demanding as to determine the S matrix uniquely. 
The human mind is not sufficiently powerful to find this unique solution without hints from 
experiment, and different approaches have in the past seized on different hints as a guide. The DTU 
approach focuses on order as its signpost. 

Maximal order is represented through the concept of "planar S matrix", a fundamental notion 
developed in section 2 in a form suitable only to mesons but which may be generalized to include 
baryons. Section 3 develops special internal-quantum-number consequences for the meson sector, 
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and section 4 interrupts the theoretical argument to survey the extent to which experimentally- 
observed mesons are approximately "planar". Having drawn attention to the strikingly planar 
appearance of the meson sector, we proceed in section 5 to develop the S-matrix topological 
expansion - intended to correct systematically the failure of the planar S matrix to satisfy unitarity. 
The successive terms of the topological expansion correspond to successively-increasing disorder, 
the planar S matrix being the leading term. The concepts of handles and boundaries as measures 
of disorder are introduced in section 5. 

Section 6 describes a peripheral mechanism tending to suppress topological-expansion com- 
ponents as their complexity increases, while section 7 is concerned with an entirely different con- 
vergence mechanism related to internal quantum numbers. Section 8 discusses the renormalization 
of planar S-matrix poles that results from the higher terms of the topological expansion. 

The general portion of our review concludes with section 8 and we then turn to a variety of 
models that are based on the general principles but that attempt quantitative predictions through 
simplifying approximations. Section 9 describes a multiperipheral bootstrap model that determines 
positions and couplings of leading planar Regge trajectories at moderate values of It I. Section 10 
describes a corresponding moderate- I t I model of the leading corrections to the planar components 
of the topological expansion - with emphasis on the pomeron picture that emerges. Section 10 
discusses the subtle relation between SU N symmetry breaking and cylinder violations of planar 
order. In section 11 we consider OZI-rule violation, and in section 12 models of single-handle 
(torus) components are described, with application to p-A2 splitting. Efforts to incorporate 
baryons and baryonium into the DTU approach will be described in section 13. 

The reader of this review is assumed to feel comfortable with standard analytic S-matrix theory 
at the level, say, of the monographs by Martin and Spearman [4] or Collins and Squires [5]. 
If terms such as "cluster-decomposition", "connected part", "crossing", or "discontinuity" are 
not familiar, there will be difficulty in following our presentation. We do not, however, assume 
any knowledge of topology. Those aspects of duality which are relevant to our discussion can be 
found in a recent review by Fukugita and Igi [6]. 

2. The planar S matrix; external regularities 

The notion of maximal order within the S-matrix framework is realized through the so-called 
"planar S matrix". The concept of planar S matrix has not been "derived", it has been motivated 
by experimental facts and is justified by self consistency [ l-3] .  The planar idea grew out of dual 
models but as we use it is not equivalent. Readers who feel the need for experimental motivation 
may scan section 4, which surveys the observed approximate meson regularities supporting 
planarity as a useful physical idea. 

The sequentially-ordered S matrix 
Planarity is so closely related to order that we proceed by immediately introducing the artificial, 

but profoundly useful notion of a sequentially-ordered Hilbert space. A physical channel is entirely 
specified by giving the momentum, spin and type of each particle. In our ordered Hilbert space 
specification of an ordered channel requires additionally that particles be assigned positions in a 
sequence. For each N-particle physical channel there are N! ordered channels, so our ordered 
Hilbert space is larger than the physical Hilbert space. 
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We may formally represent an ordered asymptotic state by a bra or ket column vector 

where A i denotes the type, momentum and helicity of the ith particle in the sequence. Within the 
ordered Hilbert space we can define an S matrix connecting the ordered asymptotic states, We 
call this the ordered S matrix and symbolize it as S o. Elements of the ordered S matrix may then 
be represented graphically by fig. 2.1. Although a similar pictorial representation is often used for 
physical S-matrix elements, the ordering of particles there is irrelevant. Particle ordering is needed 
even for the physical S matrix in the discussion of statistics but channels which differ merely in 
particle order are physically equivalent - the corresponding asymptotic wave functions and S- 
matrix elements being equal up to phase factors. For the ordered S matrix introduced here, changes 
of particle order generally change the modulus of an element as well as the phase. 

"'  
2 SO A2 

Fig. 2.1. An element of the ordered S matrix. 

The ordered S matrix, whose elements we depict in fig. 2.1, is supposed to be unitary with respect 
to the space of  ordered states. That is, 

with 

S~ So = SoS~ = 1, (2.1) 

1 =  B~ (2.2) 

The property of unitarity for So guarantees a consistent (factorizable) particle spectrum on which 
the DTU approach can be based. Achievement of such a base is the chief reason for introducing 
the ordered S matrix. 

There must of course be a rule for connecting the ordered S matrix to physical observations - in 
effect contracting the Hilbert space of asymptotic states. In section 5 we shall find this rule to be 
expressible through a "topological expansion", in which a "planar S matrix" emerges as the leading 
component, elements of the planar S matrix being linearly related to elements of the ordered 
S matrix. (It will quickly be seen why the adjective "planar" is appropriate.) Planar S-matrix 
elements do not depend on particle order and may be compared to experiment. At the same time, 
because of the linear connection with elements of the ordered S matrix, certain striking regularities 
are present. Enough of these "planar regularities" have been approximately verified by experimen- 
tal observation (see section 4) to suggest that the leading component of the topological expansion 
- the planar S matrix - is interestingly close to the physical S matrix. 
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Roughly speaking, characteristic planar regularities may be divided into two categories: those 
associated with internal quantum numbers and those associated with momentum and spin 
(including T, C and P). We shall refer to the former regularities as "internal" and to the latter as 
"external". The present section will confine itself to external planar regularities, while section 3 
will discuss internal aspects of planarity - where the connection with the quark concept begins 
to emerge. 

Ordered connected parts; ordered crossing 
We assume a cluster decomposition of the ordered S matrix, using "ring" diagrams to denote 

ordered connected parts as in the example of fig. 2.2. The order of lines around each ring is impor- 
tant, in contrast to the "bubble" diagrams for physical connected parts, which look similar. We 

I t - ~ -  I I' - I I '  I 
2 '  I ~01 2 ~ 2' 2 + 2 ' ~ - -  2 
3 '  I I 3 3 '  3 3 ' v'nj 3 

+ 
I' I I ' / ~ ' ~ .  I 
2' ~ 2 Jr 2'~--{ R')-~2 
3' :3 3 ' " ~ "  3 

Fig .  2.2. C l u s t e r  d e c o m p o s i t i o n  o f  t he  o r d e r e d  S m a t r i x .  

introduce the explicit symbol R to remind the reader of this distinction. The essential feature in 
ordered cluster decomposition is that particle lines drawn in a plane never cross each other. For 
example we do not admit decompositions of the form shown in fig. 2.3. We shall find a similar 
character for the pictorial representation of ring products that arise in expressing unitarity for the 
ordered S matrix; on a planar surface no particle lines need cross. Ordering, in other words, is 
closely related to planarity. 

I ' , - - - x - ~  I I ' -  ,~'~-_, I 
2 ' ~ - ~  2' ~ - ~  2 

~ 2 3' 3 

3' 3 

Fig .  2.3. N o n a d m i s s i b l e  d e c o m p o s i t i o n s  o f  S o  

Assuming ordered connected parts to be analytic functions of particle momenta, one may 
deduce an "ordered crossing" property that relates certain continuations from positive to negative 
energy with the replacement of ingoing particles by outgoing antiparticles (or vice versa) [7]. 
Ordered crossing follows from the unitarity of So in the same way that regular crossing follows 
from the unitarity of S. The difference is that each cyclic permutation of particle lines in a ring 
connected-part represents a distinct analytic function, and only those crossings within a given 
ring that maintain the cyclic permutation correspond to elements of the ordered S matrix. 

Consider for example the analytic function corresponding to the four-line ordered ring diagram 
of fig. 2.4. By suitably choosing which energies are positive and which are negative this single 

analytic function corresponds to the four ordered transitions such as [ BA~ --, (---~l, shown in fig. 
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8 

e 5 c 

< A 

Fig. 2.4. A four line, ordered, ring diagram. Fig. 2.5. Four ordered transitions related by ordered crossing. 

2.5, but does not correspond to transitions between ordered channels containing particles (A, C) 
and (B, D). The latter transitions correspond to different analytic functions associated with different 
ring diagrams. 

We may use figs. 2.4 and 2.5 to explain a phase convention needed when fermions are present. 
Even though our simple sequential ordering must be generalized in order to handle baryons, the 
basic idea behind the following rule will survive. If a fermion line is crossed twice in the same sense 
(say clockwise) a minus sign can be shown to result [8]. Thus, for example, if particle D is a fermion, 
we have the relation of fig. 2.6. We shall employ the convention that a reversal of sign occurs when 
a fermion is crossed at the top of the ring, with no sign change when a fermion crosses at the bottom. 
Because the total number of fermion lines is necessarily even, such a convention can be shown to 
be consistent [9, 10]. Suppose that particles C and D in fig. 2.4 are fermions, with A and B bosons. 
Our convention then says that the first three amplitudes of fig. 2.5 are the analytic continuations 
of fig. 2.4 with a positive sign, while the remaining amplitude of fig. 2.5 carries a minus sign. 

D A ® e 
. . . . .  B C 

C D 

Fig. 2.6. Ordered crossing relationship if D is a fermion. 

In section 5 ordered connected parts will constitute the vertices from which the topological 
expansion is constructed. Let us next consider the poles of ordered connected parts, which in 
section 5 will allow a physical meaning for lines connecting vertices. 

Planar poles 
The same unitarity considerations that imply factorizable poles for physical connected parts, 

with a correspondence between poles and external particles, lead to a similar pole structure for 
ordered connected parts. Each of the two factors in the residue of a pole in an ordered connected 
part is itself an ordered connected part. Figure 2.7 gives examples of poles in the connected part 

D < 

~, < O B - - < - - ~ Y  " ~ A  

Fig. 2.7. Poles in the ordered connected part  of fig, 2.4. 
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of fig. 2.4 corresponding to the different channels of fig. 2.5. Here the residue factors are 3-line 
ordered connected parts; as such they possess the ordered crossing property. Note that a pole, 
if regarded as a single-particle channel in the ordered Hilbert space, is not itself characterized by 
an order. For this reason it will be possible to attempt a direct correspondence between physical 
particles - the poles of the physical S matrix - and poles of the ordered S matrix, which we shall 
call "planar particles". The two sets of poles are different but there must exist some degree of 
correspondence or there would be no point in discussing the ordered S matrix. Section 4 deals 
with the question of which physically-observed hadrons may be described as "approximately 
planar". 

Assuming that some physical particles correspond at least roughly to certain planar particles, 
one may seek to define a "planar S matrix" whose poles are those of the ordered S matrix (i.e. the 
planar poles) but whose multiparticle channels have no order. Elements of such an S matrix might 
then be compared with experiment. 

Construction of the planar S matrix from ordered connected parts 
We define the planar S matrix by giving a rule for constructing its connected parts from ordered 

connected parts. Each N-line connected part of the planar S matrix is a linear superposition of 
the (N - 1)! different ordered connected parts that involve the corresponding planar particles. 
This operation effectively contracts the ordered Hilbert space. The relative coefficients in the 
superposition are + 1 according to whether an even or an odd number of fermion transpositions 
is involved [10]. Thus, in our 4-line example, with C and D fermions while A and B are bosons, 
the planar connected part is given by the six-term superposition in fig. 2.8. Such a superposition 
makes equivalent all particle orderings, up to a ± 1 phase factor, and one sees that the spin-statistics 
rule for identical particles is satisfied. Full crossing is evidently achieved for planar connected parts. 

= <e + < B  , o  
D 0 

Fig. 2.8. A planar connected part defined as a superposition of ordered connected parts. 

Furthermore, although not quite so evident, a consistent pole structure is maintained [10]. It 
can be shown that superposition, according to the rule illustrated in fig. 2.8, leads to factorizable 
residues of the poles in planar connected parts - with factors which are themselves planar connected 
parts. For example, corresponding to fig. 2.7 the 4-line planar connected-part poles could be 
represented as in fig. 2.9, where the 3-line connected-part residue factors are given by super- 
positions of the type illustrated in fig. 2.10. 

Unitarity 
Now, if planar connected parts have correct symmetry and crossing properties and possess 

a consistent factorizable pole structure, what is inadequate about the planar S matrix? The answer 



Geoffrey F. Chew and Carl Rosenzweig, Dual topological unitarization: an ordered approach to hadron theory 271 

< B ~ < < D  

Fig. 2.9. Poles in a planar connected part. Fig. 2.10. Residue factors of planar, three line connected part. 

is, unitarity. If one builds a planar S matrix out of planar connected parts, one finds unitarity not 
satisfied - even though the ordered S matrix in the larger Hilbert space of ordered asymptotic 
states is unitary. The contraction rule illustrated by fig. 2.8 fails to preserve unitarity. 

The defect may already be seen in 4-line connected parts. Suppose we consider for a physical 
(A, B)---, (C, D) amplitude the normal-threshold discontinuity in the variable s = SAe = SCD 
= (PA + PB) 2 = (Pc + PD) 2, associated with a two-particle intermediate channel (E, F). Unitarity 
implies a formula corresponding to fig. 2.11, where the bubble diagrams carry no meaning for 
particle ordering. (The + and - designation indicates that the two members of the product are 
to be evaluated on opposite sides of the cut in question. We shall always understand such a rule 
for unitarity products and shall henceforth omit the + and - symbols.) We now show, as indicated 
in fig. 2.12, that the formula of fig. 2.11 is not satisfied by planar connected parts. 

' ' E 

B < B {5 B < B 
, , F 

Fig. 2.11. Physical unitarity relationship. Bubble diagrams Fig. 2.12. Graphical statement of the fact that planar connected 
carry no information about ordering, parts do not satisfy unitarity. 

Let us start by taking the s-discontinuity in question, term by term within the 6-term super- 
position of fig. 2.8. We find a superposition of four ordered s-discontinuities, as shown in fig. 2.13. 
The remaining two terms in fig. 2.8 lack any s discontinuity because they cannot be crossed so as 
to connect s channels of the ordered S matrix. This property, crucial to the DTU approach, will be 
derived more systematically in section 5. Let us next consider the rule implied by unitarity of the 
ordered S matrix for the discontinuities of ordered connected parts. The rule is similar to that of 

' ' 5 ' B fi A D A 

i i 

_ h _ ~ ' A 

h 

Fig. 2.13. The s discontinuity of fig. 2.8. 

fig. 2.11 except that particle ordering is everywhere meaningful. Figure 2.14 gives an example. 
The important feature is that particle lines never cross in ordered discontinuity products; ordered 
discontinuities, in other words, are planar products. 
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F E 

Fig. 2.14. Two-particle discontinuity of an ordered connected part implied by the unitarity of the ordered S matrix. Compare to fig. 2.11. 

If the formulas like that of fig. 2.14 are substituted into the equation of fig. 2.13, we find 2 × 4 = 8 
different planar products of ordered amplitudes making up the discontinuity of the planar connect- 
ed part in question, i.e. the left-hand side of fig. 2.12. On the other hand, were each member of the 
product on the right hand in fig. 2.12 expressed as a superposition of six (6) ordered connected 
parts, we should find 6 × 6 = 36 different products. Eight of these would indeed be planar products, 
but there would be in addition 36 - 8 = 28 nonplanar products - examples of which are shown 
in fig. 2.15. Because of these nonplanar components of the right-hand side of fig. 2.12, the left- and 
right-hand sides cannot be equal; the planar S matrix cannot be unitary. 

F < F 

E 

(a) (b) (c) 

Fig. 2.15. Examples of nonplanar products present on the right-hand side of fig. 2.12. 

It will be the task of sections 5, 6 and 7 to show the sense in which nonplanar discontinuity 
products are smaller than their planar counterparts, so that the planar S matrix has a chance of 
approximating experiment. Section 5 develops a systematic expansion for calculating the physical S 
matrix starting with the planar S matrix, based on the necessity of achieving unitarity for the 
physical S matrix. 

The absence of nonplanar discontinuity products leads to planar S-matrix regularities not 
present in the full S matrix. But unitarity of the ordered S matrix, from which the planar S matrix 
is constructed, still implies an infinite set of nonlinear relations between ordered connected parts. 
To the extent that solutions of these relations may not exist, there is no proof that an ordered 
analytic unitary S matrix exists, just as there is no existence proof for a physical unitary analytic S 
matrix. In order to proceed we are forced to assume the existence of an ordered analytic S matrix 
with planar discontinuity formulas for its connected parts. 

Charge conjugation in the ordered S matrix 
Crossing implies that for every planar particle there exists a corresponding planar antiparticle• 

TCP equivalence of the two ordered amplitudes in fig. 2.16 then requires that the charge conjuga- 
tion of an arbitrary ordered channel 

(i) 
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< A 

Fig. 2.16. TCPequivalence of two ordered amplitudes. 

that is, a channel where each particle has been replaced by the corresponding antiparticle and the 
order has been inverted [10]. For ordered connected parts charge conjugation invariance thus 
means that, when particles are replaced by antiparticles and the cyclic order is reversed, as indicated 
by the example of fig. 2.17, the value of the connected part is unchanged up to a phase factor. 

Self-conjugate planar particles will be important to certain of our subsequent arguments. 
Each such particle is characterized by being either even or odd under charge conjugation. That is, 
in the notation of a single-particle channel 

(i) = C[(I),  where Ct = ___ 1. (2.3) 

It follows that an ordered connected part involving only self-conjugate particles has the property 
shown in fig. 2.18. That is, inversion of order is equivalent to multiplication by the overall product 
of charge-conjugation symmetry factors 1-ii, 12]. This rule will turn out in section I0 to be of 
practical importance, especially when generalized to ordered connected parts involving ordered 
reggeons. 

Fig. 2.17. Charge conjugation invariance of ordered connected 
parts. 

B = C,  Co Cc -'" 
C 

Fig. 2.18. Charge conjugation relationship for ordered connect- 
ed parts of self-conjugate particles. 

We point out here a confusing facet of charge-conjugation invariance for ordered and planar 
connected parts. One expects charge-conjugation invariance to require vanishing of connected 
parts for self-conjugate particles when the product of all symmetry factors is - 1. Such vanishing, 
however, does not occur for ordered connected parts - where charge conjugation produces an 
inversion of order. The vanishing does occur for a planar connected part, because within the 
superposition by which the latter is constructed (e.g. fig. 2.8 with all plus signs because self-conju- 
gate particles must be bosons) every ordered connected part may be paired with one of opposite 
order. If the overall product of charge-conjugation symmetry factors is -1 ,  the two members of 
each pair cancel each other [11, 12]. 

The consistent factorization of the poles of the planar S matrix ensures that they will respect 
the charge-conjugation selection rule. In fig. 2.9, for example, if particles A, B, C, D, E are all 
self conjugate, the pole residue is nonvanishing only if CE = CACa = CcCD. Discontinuities of 
planar connected parts, however, do not generally respect charge-conjugation selection rules. For 
example, the eight-term superposition corresponding to figures 2.13 and 2.14 (again, with all 
positive signs) does not vanish when CEC F = - C A C  a = - - C c C o ,  that is, when the intermediate 
channel has charge-conjugation symmetr); opposite to that of the initial and final channels [13-]. 
As discussed in section 12 it is necessary to include nonplanar terms such as that of fig. 2.15a 
in order to achieve the expected cancellation. 
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Exchange degeneracy 
We have remarked on the absence of poles and normal thresholds in an ordered con- 

nected part from any channel invariant that does not correspond to a cluster of adjacent 
particles in the cyclic order. Within the 4-line ordered connected part of fig. 2.4, for example, 
if sij = (Pi + pj)2, we have poles and normal thresholds in Sna = Sco and in SaD = SBc but not 
in SAC = SBo. Designating the three Mandelstam variables here as s = SnB = Sco, t = SAO = SBc 
and u = Sac = saD, the absence ofu singularities means that both in z~ - cos 0~ m and z, = cos 0~ ~ 
there is no "left-hand cut". The Froissart-Gribov partial-wave amplitudes for both s and t ordered 
reactions then have the property, called "exchange degeneracy", that ordered amplitudes of 
opposite signature are equal. (Signature need never be introduced.) Regge trajectories for ordered 
connected parts correspondingly carry no signature label. 

Although ordered Regge poles have neither well-defined signature nor well-defined parity, 
the product of signature and parity or "naturality" is meaningful. A similar statement applies to 
charge-conjugation symmetry for ordered Regge trajectories containing selfconjugate planar 
particles. The product of signature and charge-conjugation symmetry is well defined [10]. Moving 
along an ordered trajectory planar particles alternate in signature, parity and charge-conjugation 
symmetry. 

When connected parts for the six different orders are superposed to form a four-line planar 
connected part (fig. 2.8), u singularities will generally occur and exchange degeneracy will be lost. 
Pole positions cannot, however, be altered by the superposition, so in planar connected parts 
Regge trajectories of opposite signature will continue to coincide. Regge residues of opposite 
signature are not equal but are simply related [10]. One often characterizes this planar regularity 
as exchange degeneracy, even though it applies only to Regge poles and not to the full Froissart-  
Gribov planar amplitude. 

Absence of Regge branch points and fixed singularities 
The absence of u singularities from the ordered connected part of fig. 2.4 means that the two 

double discontinuities p~. and P,u both vanish. The usual arguments demanding Regge branch 
points in J~ and J, then disappear [5], together with the arguments demanding fixed singularities 
at nonsense points of unphysical signature. Although no proof has been given,* the absence of 
Regge branch points and fixed singularities from ordered connected parts has been widely con- 
jectured. Because superposition cannot create new singularities, a similar regularity would attach 
to planar connected parts. In our review we shall adopt this conjecture and assume the only 
planar Regge singularities to be moving poles. 

3. Internal planar regularities; quark-line diagrams 

Any connected part must vanish for combinations of incoming particles that carry a nonzero 
amount  of conserved quantity such as electric charge, but with ordered amplitudes there may 
additionally be a constraint on the allowable order of particles. Ordered connected parts for certain 
permutations may be required to vanish even though there is a zero net flow of all conserved 

* Often invoked is Mandelstam's demonstration that nonplanar Feynman diagrams are needed to generate Regge cuts. Perturbation 
arguments are inadequate, however, because, as shown in section 8, the ordered S matrix probably has no weak coupling limit. 
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quantities "into the ring". (An example the reader may anticipate is the vanishing of any ordered 
amplitude where two planar Ir ÷ particles are adjacent.) The special ordered constraints will turn 
out to be describable through diagrams that associate planar particles with oriented two-dimen- 
sional "strips" whose two opposing edges "carry" the internal quantum numbers. These two edges 
act in some ways like a quark-antiquark pair, so we shall refer to the pictorial representation of 
ordered constraints as "quark-line diagrams". Much of the reasoning used in this section is due 
to Weissmann [7]. 

It has been shown by Weissmann that if ordered selection rules exist, ordered unitarity requires 
planar particles to group themselves into distinct families, each family being labeled by a pair of 
indices (i, j). The first index i labels another set of planar particles - those allowed to immediately 
precede (clockwise sense) the (i,j) family members. These predecessor sets are unique and non- 
overlapping with each other. The index j labels the set of "successor" planar particles allowed to 
immediately follow the (i,j) family members. Charge conjugation invariance means that for each 
predecessor set there is a corresponding successor set made up of the antiparticles, so the indices i 
and j cover the same range. A member of the (i,j) family lies itself in the predecessor set j and at 
the same time in the successor set i. 

We present an outlined derivation of these statements as an example of Weissmann's reason- 
ing. Consider a planar particle A and denote by iA the set of all planar particles that imme- 
diately precede A in the counterclockwise permutation of some nonvanishing ordered connected 
part. According to charge conjugation invariance, the antiparticles of i A constitute the set of all 
particles that can immediately follow 7i. Suppose now that some particle C appears in both of 
two "predecessor" sets iA and is, associated with two different particles A and B. There must then 
exist nonvanishing discontinuity products of the type shown in fig. 3.1 implying that B appears 

(a) (b) 

Fig. 3.1. (a) A nonvanishing discontinuity in which C appears as a predecessor to A, and C as successor to B or, (b) C as predecessor 
to B, and ~ as successor to ~[. 

m the predecessor set [ A and ~ in the predecessor set iB. A similar argument based on fig. 3.2 next 
allows the conclusion that if any particle other than C, say D, appears in iA it must also appear 
m is. The two sets i A and is must therefore coincide completely if they share any particle. Conversely, 
each planar particle belongs to one and only one predecessor set, which may be designated by an 
index i that makes no reference to any of the particles for which i is the predecessor set. 

The foregoing line of reasoning evidently can be applied also to the set of planar particles 
immediately followin# (clockwise sense) some designated planar particle, leading to identification 
of unique and nonoverlapping "successor" sets. We have already remarked how charge conjugation 
lnvariance guarantees that for each "predecessor" set i there is a successor set consisting of the 
corresponding antiparticles. A natural convention is to designate the latter set with the same 
index i, making explicit that predecessor sets are in one-to-one correspondence with successor sets. 

° 

Fig. 3.2. A discontinuity which establishes D as a predecessor to B. 
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These requirements are compactly summarized by requiring any nonvanishing connected part 
to be representable through a diagram of the type of fig. 3.3, where the family indices appear on 
directed "links" connecting successive particles. Particle A belongs to the family (i,j), B to the 
family (j, k) and so on. For some purposes it is helpful to visualize the succession of directed links 
in fig. 3.3 as the boundary of a two-dimensional oriented surface. Isolating an individual planar 
particle, we then associate it with an oriented "strip" whose two edges - corresponding to predeces- 
sor and successor links - characterize the (internal) selection rules. 

E <.c 
o 

Fig. 3.3. Quark-l ine d iagram for an ordered connected part. 

Now consider an additively-conserved internal quantum number Q, such as electric charge. 
How can conservation of Q be compatible with the rules embodied in fig. 3.3? A natural guess is 
that all planar particles belonging to a family (i,j) share a common value of Q, a value that we 
designate as Qij. (Weissmann has shown that, if such is not the case, then all values of Q from + oo 
to - o o  must appear on particles in the planar spectrum.) The requirement that incoming Q's 
shall sum to zero can then be shown to imply that Qij depends on the indices i and j according to 
the rule: 

Q i j  --- qj - qi. (3.1) 

Here we see the quark-ant iquark role for the two links. The rule (3.1) is equivalent to saying that 
link i "carries" a charge q~. The opposite direction of the two links means that a planar particle 
belonging to a family (i,j) has charge equal to that of a "quark" of typej  plus that of an "antiquark" 
of type i. 

We are hoping to establish a correspondence between planar particles and physical particles, 
so we are led to ask for the minimum number of link types (predecessor or successor sets) capable of 
accommodating the observed additively-conserved hadronic internal quantum numbers. Putting 
aside baryon number for the moment,  experiment tells us that at least strangeness and charm 
must be considered in addition to electric charge. With no conserved quantities at all, there would 
already be one link type, so in order to encompass three conserved quantities we need 3 + 1 = 4 
link types. Table 3.1 shows one straightforward way of attaching quantum numbers to links. 

Table 3.1 

Link type Charge Strangeness Charm 
(successor index) 

1 n 0 0 0 

2 p I 0 0 
3 ). 0 1 0 
4 c 1 0 1 
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Should further conserved quantities be discovered, one adds more link types. A total of N different 
links can accommodate N - 1 additively-conserved quantum numbers. In the language of flavors, 
we have one link type for each flavor. 

Because the quantum numbers of a planar particle, according to formula (3.1), reflect only the 
differences of the quantum numbers attached to the two associated links, one may add any constant 
to the latter without changing the ordered S matrix. In particular we may uniformly subtract 1/3 
from each entry in column 1 of table 3.1 so as to achieve the usually-assigned fractional quark 
charges. (When baryons are incorporated into an ordered S matrix the link quantum numbers will 
become unambiguous.) 

We emphasize that the planar family assignments in table 3.1 are tentative and subject to self- 
consistency checks with respect to ordered discontinuity formulas. Weissmann's reasoning permits 
an arbitrary collection of link types but this reasoning has only considered the topological con- 
sffaints of ordered discontinuity formulas - not the dynamical constraints flowing from the 
character of the latter as nonlinear relations between ordered amplitudes. It may be hoped that 
the existence of a variety of flavors is uniquely required by ordered unitarity. 

Why have we not included baryon number in table 3.1? It will be seen in section 13 that a more 
complex notion of particle ordering than a simple linearly-linked chain is needed in order to 
describe baryons. The connection with the quark concept reached in the present section shows 
that simple sequential ordering, together with ordered selection rules, implies q~l structure but 
not qqq. Section 13 describes a generalization of the notion of particle order that maintains the 
essential characteristics of planarity and that yields a planar spectrum corresponding to qqq and 
q~lq, with certain superpositions and contractions thereof. The more general ordered S matrix 
may be split into noncommunicating sectors* one of which, containing only q~ states with baryon 
number zero, is closely related to the simple sequentially-ordered S matrix; all external and internal 
regularities remain the same. The considerations of the present section will survive the generaliza- 
tion but they apply only to "ordinary" mesons. 

The assignment in table 3.1, together with fig. 3.3, leads to a collection of remarkable "internal" 
planar regularities for mesons. In addition to the requirement that planar mesons fall into families 
with qU: 1 quantum numbers (no "exotics"), the demand that the succession of links constitute a 
single boundary leads to the OZI rule forbidding any reaction not depictable in the connected 
form of fig. 3.3. Consider for example the four-particle reaction 

A(n, p) + B(p, n) -~ C(2, c) + D(c, 2). 

Although all internal quantum numbers are conserved, there is no connected quark-line diagram, 
so the reaction is forbidden at the planar level. Representation of this reaction requires two dis- 
connected boundaries, and the reaction becomes allowed only at a higher level of the topological 
expansion (see section 11). 

An important special case of the OZI rule relates to planar particles of the type (i, i), which carry 
overall zero quantum numbers but which have no planar communication with channels where the 
link type i fails to appear, even though the overall channel quantum numbers are zero. Section 4 
will discuss the relevance of the OZI rule to the stability of (c, c) (charmonium) and 0-, 2) (strange- 

* Although the different sectors do not  communicate  through ordered unitarity, a complete understanding of any one ordered 
sector involves all the others. 
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onium) states like ~k, ~', ~o and f'. The physical consequence for the (n, n) and (p, p) families is more 
tricky because of isospin symmetry, which means that every (n, n) planar particle has a degenerate 
(p, p) partner. As always the case with degenerate quantum systems, one then finds it physically 
useful to consider those special linear superpositions that are unmixed by elements of the symmetry 
group. In the present case the two superpositions are the symmetric and antisymmetric combina- 
tions [(n, n) _+ (p, p)]/x/~, corresponding to I = 0,1 with Iz = 0. With such states the usual OZI 
rule becomes replaced by a statement of degeneracy between I = 0 and I = 1 in the ordered S 
matrix. Section 4 considers the experimental evidence for such degeneracy. Notice that we have 
given no argument requirin9 internal symmetry (such as isospin invariance) in the ordered S matrix. 
Such arguments may eventually emerge from nonlinear unitarity (dynamical) requirements. 

Were SU 3 symmetry exact (or almost exact), physical expression of the OZI rule would be a 
prediction of symmetry between octets and singlets rather than a rule forbidding certain decays of 
(2, 2) states. To decide whether the internal planar regularity is more usefully described as an OZI 
selection rule or as an SU N multiplet degeneracy, the important question is whether the breaking 
of SU N symmetry is large or small compared to the departure from planarity of the physical 
particles in question. SU2 symmetry breaking is so small that here one chooses to emphasize 
isospin degeneracy, whereas SU 3 and SU4 symmetry breaking is so large that one usually (although 
not always) chooses to think of an OZI selection rule. Sections 10 and 11 discuss these subtle 
issues; a superficial discussion unavoidably occurs already in section 4. 

4. How planar is the physical S matrix ? 

The planar S matrix plays a central role in the topological expansion - serving as the starting 
point. It is correspondingly important to known how closely the physical S matrix resembles its 
planar counterpart;  it would be reassuring to establish that the planar S matrix gives a reasonably 
accurate representation of the real world. In order to discuss baryons we shall need a generalization 
of the simple sequential ordering on which the planar S matrix is based, but for the meson sector 
of qF:l states the external regularities described in section 2 and the internal regularities described 
in section 3 will survive the generalization. Let us consider first the extent to which observed mesons 
exhibit the characteristic external planar regularities required by ordered unitarity. 

Exchange degeneracy of Regge trajectories 
At the heart of planarity is the absence of certain discontinuities from ordered connected parts. 

We have stressed in section 2 the consequence that Regge trajectories of the planar S matrix occur 
in degenerate pairs of opposite signature - a property known as exchange degeneracy (EXD). 
To what extent do physical meson trajectories display EXD? 

The leading (highest angular momentum at fixed mass) hadron trajectories contain mesons of 
natural parity and "natural charge conjugation symmetry". The tendency of this entire group of 
trajectories to occur in EXD pairs is striking. The odd-signature, zero-strangeness I = 1 trajectory, 
containing the p (J = 1) and g (J = 3) mesons, has been experimentally determined over the 
interval - 1  GeV z < t < 3 GeV z. The corresponding even-signature trajectory, containing the 
Az (J = 2) meson, has been determined over a comparable interval and, as shown in fig. 4.1, 
is found to deviate from the odd-signature trajectory by no more than ,-~ 0.1 units in J. The deviation 
near J = 2 is in fact much less. The accuracy with which the A 2 trajectory coincides with the p 
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Fig. 4.1. The observed Regge trajectories for the leading families of mesons. The various lines are not fits, but are meant to guide the 
eye. For  t > 0 E X D  is seen to be very good. We have assumed pomeron- f  identi ty (see section ]0). 

trajectory is far better than the accuracy of SU 3 symmetry, approaching the accuracy of SU 2 
symmetry. For the leading I = 0 (nonstrange) trajectories EXD is experimentally well satisfied for 
t > 0.5 GeV z although for t < 0 there is an important degeneracy breaking associated with the 
concept of pomeron. We shall deal in detail with the latter phenomenon in section 10, where we 
show that a large deviation from planarity in the I = 0 low-t sector is to be expected. No such large 
deviation is expected in the I = 1/2 sector and, indeed as seen in fig. 4.1, the K* (J = 1) and K** 
(J = 2) trajectories display a degree of EXD comparable to that of p and A2. In section 12 we 
shall see how even the small I = 1/2, 1 deviations from EXD may be systematically and quantita- 
tively explained through a nonplanar component of the topological expansion. 

For the next group of meson trajectories - which have unnatural parity - there is less experi- 
mental knowledge but the general pattern appears similar. Except for ! = 0 at low t the data is 
compatible with reasonably-accurate EXD: for example, exchange-degeneracy between the rt and 
B trajectories. Thus within the meson sector there is general adherence to exchange degeneracy 

- with the important I -- 0, low-t exceptions, to which we intend to give extensive attention. 

Weakness of Regge cuts; short-range order in rapidity 
Less striking than EXD but still worthy of note is the apparent weakness of Regge cuts in observ- 

ed physical amplitudes. In section 2 we drew attention to the widespread belief that the only Regge 
singularities of the planar S matrix are factorizable (moving) poles. A qualitatively-remarkable 
aspect of high-energy hadron reaction experiments is the extent to which a simple Regge-pole 
description has turned out to be successful both for exclusive and inclusive measurements. The 
concept of short-range order in rapidity has been of great phenomenological utility; such short- 
range order - a consequence of factorizable Regge poles - is not easily understood if Regge cuts 
are important. The general success of Regge-pole representations is so well established that one 
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easily forgets the need to understand why other Regge singularities are less significant. If we are 
able to explain why nonplanar components of the topological expansion are small, we expect 
automatically to understand why Regge cuts are weak. 

Isospin degeneracy 
Passing to internal planar regularities, let us consider the property of 1 = 0, 1 degeneracy 

- predicting quartets of equivalent nonstrange, noncharmed states. In the physical S matrix the 
(p, co) and (A 2, f) combinations provide outstanding examples with respect to both masses and 
couplings. The observed deviations from degeneracy are strikingly small. When the concept of 
isospin degeneracy is extended to Regge trajectories we find, just as for I = 0 exchange degeneracy, 
that deviations become large at small t. The explanation, discussed in section 10, is closely related 
to that for low-t EXD breaking. 

The lowest-mass unnatural-parity mesons, ~r and q, seem to display a large deviation from isospin 
degeneracy, but the breaking is no larger than expected for such low-mass states from the nonplanar 
components of the topological expansion needed to restore unitarity. The degree of rc - q isospin- 
degeneracy breaking is similar in magnitude to the EXD breaking responsible for pomeron 
phenomena. 

OZI selection rule 
Section 3 drew attention to certain reactions forbidden at the planar level because of not corres- 

ponding to single-boundary (connected) quark-line diagrams [14]. To consider experimental 
evidence on such reactions we need to associate physical particles with planar families. Within 
the group of leading physical mesons the following association follows straightforwardly on the 
basis of quantum numbers: 

F a m i l y  jPC = O-  + 1 - - 2 + + 

n , p  r~ + p+ A~ 

2, n K ° K °* K °** 
2, p K* K +* K ~** 

Isospin degeneracy allows the further identifications, 

[n, n + p, p] /~_2 q ¢o f 
[~,~_p,p]/,fi ~ o  po A o 

although as noted above the physical r/is badly split from the zr. When antiparticles are considered 
we have accounted in the above listing for 8 of the 9 planar families associated with the first three 
flavors (isospin and strangeness). What physical particles should be associated with the remaining 
(2, 2) family? To the extent that SU 3 nonet groupings are experimentally recognizable, it is natural 
to assign the ninth member to this final category: 

2, 2 r/' ~p f. 
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With this complete set of assignments we are in position to discuss the experimental status of the 
OZI rule [14-]. 

The most celebrated examples of OZI-forbidden reactions are decays of the type 

(2, 2) --. (p, n) + (n, p) 

which conserve all internal quantum numbers but which do not admit a connected quark-line 
diagram. Illustrations are (p --+ n +p- and t" ~ n +re-. When compared to the corresponding decays 
a) - ,  rt + p-  and f ~ It + n-  - allowed by the OZI rule - a dramatic suppression has been experimen- 
tally found. The available evidence, recently compiled by Okubo [15] indicates a high degree of 
planarity in this sector of the physical S matrix. We shall see, furthermore, in section 11 that the 
small observed rates of these OZI-forbidden decays are understandable through unitarity-required 
corrections to the planar S matrix. All 2-particle decays of r/ and r/' are forbidden by standard 
selection rules, so no similar experimental tests of the OZI rule are possible here. 

Also reviewed by Okubo is evidence that (p and f are produced much less frequently than co 
and f in reactions where the other particles do not "contain" strange quarks. These reactions 
involve baryons and cannot be systematically considered until a generalization has been made of 
the planar S matrix. It is natural, however, to anticipate some form of connected quark-line 
representation and a generalized OZI rule, with planar baryons classified into (i, j, k) families 
(a baryon "without strange quarks" is one belonging to a planar family where neither i nor j nor k 
is a 2). Reactions involving baryons may then be admitted into evidence and, as shown by Okubo 
[15], they give impressive additional support to planarity as a good physical approximation. 
We remark that, even when initial particles contain no strange quarks, production of (p and f 
may be allowed on a planar level if other "strangeness-carrying" particles like K or K* are produc- 
ed. As discussed by Okubo [15], it is found experimentally that reactions involving r/' and r/display 
less planarity than those involving q~, (o or f and f. The degree of nonplanarity is, however, no 
greater than already indicated by the rc - r/ mass splitting. Section 10 will show that all these 
I = 0 deviations from simple planar behavior are understandable through the second term of the 
topological expansion - the leading correction required by unitarity. 

The reader need hardly be reminded of the spectacular accuracy of the OZI rule for charmonium 
(c, c) states. Again we refer to the Okubo review [15] for details. In section 11 we explain why 
mesons of increasing mass are expected to show increasingly accurate planarity. 

To summarize this section, there exists widespread evidence that the meson sector of the physical 
S matrix is approximately planar. It is then reasonable to treat corrections to the planar S matrix 
by perturbation techniques and, except for sections 9 and 13, the remainder of our review is devoted 
to such corrections. 

5. The S-matrix topological expansion 

It was emphasized in section 2 that the extreme degree of order embodied in the planar S matrix 
is inconsistent with unitarity. The present section will show how one attempts systematically to 
regain unitarity through a succession of corrections to the planar S matrix. Since the succession 
is constructed through topological considerations we begin by reviewing some properties of graphs 
with ordered vertices. Physically the reader may anticipate that such vertices are to be associated 
with the ordered connected parts defined in section 2. 
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Graphs with ordered vertices 
By an ordered vertex we mean one whose attached lines lie in a definite cyclic sequence - admit- 

ting the two-dimensional graphical representation illustrated in fig. 5.1. Here we show a 5-line 
vertex with the cyclic order BEADC as well as a four-line vertex with the order FGDC. (A conven- 
tion must be adopted to associate the stated order of lines with a sense of rotation about the 
vertex - clockwise or counterclockwise. We have chosen the clockwise sense in fig. 5.1, consistent 
with sections 2 and 3, and will continue this convention throughout our review.) We have seen 
already in section 2 how the unitarity condition on the S matrix, which involves products of 
connected parts, leads to consideration of "products of ordered vertices" where certain lines from 
one vertex are identified (joined) with certain lines from another vertex (figs. 2.14 and 2. ! 5). Suppose 
in fig. 5.1, for example, that the initial channel contains two particles corresponding to lines F 
and G while the final channel contains three particles corresponding to the lines A, B and E. 
Suppose further that a channel communicating with both of the foregoing channels contains two 
particles corresponding to the lines C and D. Unitarity will then lead us to consider the product 
graph corresponding to the dotted lines in fig. 5.1 joining the two vertices. 

"-. \ F G 
\ 

\ 
\ 

# 

Fig. 5.1. A five line vertex BEADC, a four line vertex FGDC,  and their connection (dotted line) in a unitarity product. 

More generally, if unitarity is used to prescribe iterative corrections to a starting approximation 
based on ordered amplitudes, one anticipates a characterization of S-matrix components  through 
the topology of graphs built from ordered vertices. 

Boundaries and handles as expansion parameters 
It is known that each graph built from ordered vertices may be mapped (without crossing of 

lines) onto a two-dimensional surface of uniquely prescribable "minimal topological complexity". 
The surface is characterized by the number of "handles" h and by the way in which external lines 
are attached to various boundaries. We show below, with examples, how the classification of an 
arbitrary graph is achieved. Let us tentatively assume, subject to the requirement of consistency 
with unitarity, that a physical connected part describing the interaction of particles A, B, C . . . .  
may be decomposed into a series of components  each belonging to a definite two-dimensional 
topology. Following Veneziano [3, 16], we call this decomposition the "topological expansion": 

M A , . , c  = . . . .  

h=O b i , b 2 . . .  

A boundary bi accommodates a subset of the external lines in a definite cyclic order, so the possible 
values taken by boundary indices are enumerable by dividing the total number of external lines 
into all possible subsets and within each subset considering all possible cyclic orderings. To avoid 
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misunderstanding let us write out the explicit boundary structure in the topological expansion of 
a 4-line connected part :* 

go 

M A'B'c'D - ~ MAh BcD+ M ~  13Bc + M ~  cBI) + M h  ADBc + MAh cob + M ~  DcB 
h=o  

+ M AB,cD + MAc,"° + M AD,Bc 

+ Mr, "cD + Mr, ~c" + M~, Aco + M~, DcA + MT, A ~  + M~, o~A + M~, A~ + M~, ~ "  

+ Mr,", c~ + M~ 'c,"o + Mh ~ ,c , °  + Mt  ,~,~ + Mt  ~,",~ + Mt  °'~,c + M~ ',~,~'~. (5.2) 

The order in which the different boundaries are listed is meaningless and cyclic permutations of 
lines on a given boundary leave the topology unaltered. For example, 

MA,aCD = MBCD,A = MChDa, A. 

It is evident that the total number of boundaries cannot exceed the total number of external lines. 
The reader will no doubt have surmised that the components with a single boundary and no handles 
comprise what we have in section 2 called the planar S matrix. Later in the present section we shall 
return to this important physical point, but first we deal with some purely mathematical questions. 

How does one determine the topological classification of a graph built from ordered vertices? 
We state here a prescription given by Edmonds [17-1, drawn to our attention by Stapp. Take any 
graph, such as the 4-vertex, 6-external line example of fig. 5.2. We assume that all internal lines 

\ I 

Fig. 5.2. A graph with 4 vertices, 6 external lines, and 7 internal lines (dark lines). The thin line, dotted line and dashed line are orbit 
paths. 

connect different vertices. Edmonds '  rule avoids the need to construct explicitly the two-dimen- 
sional surface on which the graph is to be mapped. Working directly with the graph, start at any 
external line and proceed clockwise around the vertex until reaching the first line that is not  
external. Then follow that line to the next vertex, at which point the process is repeated - always 
proceeding clockwise around each vertex. Eventually one will return to the starting point. The 
complete closed orbit defines a boundary. All external lines that have been crossed in such an 
orbit may be said to exit from the same boundary and in a definite (cyclic) order. In fig. 5.2, for 
example, the lines A, F, B and C, in that order escape from the dashed boundary, while the lines 
D and E escape from the thin boundary. Readers conditioned to quark-line diagrams may feel 
the urge to associate quarks with Edmonds '  "orbit" connecting points on the same boundary, 

* The internal quantum number selection rules of section 3 may require certain components to vanish. 
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but Edmonds  presumably had never heard of quarks when he devised this solution to a purely 
topological  problem. 

For  a given graph let us introduce a parameter  br, ax giving the total number  of different boun-  
daries that would occur if at least one additional external line were inserted between any adjacent 
pair of internal lines at each vertex. More  concisely, bma x is the total number  of different orbits 
that can be traced through the graph by Edmonds '  rule regardless of whether  the orbit crosses an 
external line.* In the graph of fig. 5.2, bma x = 3. The parameter  bma x is impor tant  because of a 
formula due to Euler that determines the (minimum) number  of handles on the embedding two- 
dimensional  surface. If the total number  of vertices is v and the total number  of internal lines is e 
(in fig. 5.2, v = 4 and e = 7), then Euler's formula for the min imum number  of handles is 

2 + e - v - bma x 
h = (5.3) 

2 

Using Euler's rule we find that the min imum number  of handles, on a two-dimensional  surface 
capable of accommoda t ing  the graph of fig. 5.2, is h = 1. (Such a surface is often called a torus.) 
A connected-par t  componen t  with the topology of fig. 5.2 we designate in the nota t ion of eq. (5.1) 
by M1AFBc'DE. The reader may verify that a connected-par t  componen t  with the topology of fig. 5.1 
would be designated by M0 F~'BEA. 

Graph representations of  connected-part components 
A graph consisting of a single vertex (no internal lines) may be mapped  onto  a surface with no 

handles and a single boundary.  A connected-par t  componen t  with such topology is of the class 
M~ ~ c  - often characterized as the planar class. Conversely we may associate any componen t  
in this especially simple class with a single vertex. Also lying in the planar class are equivalent 
2-vertex graphs of the type illustrated in fig. 5.3, it being convenient  to use a 2-vertex representat ion 
when discussing poles and discontinuities. (We shall rarely need to go beyond 2-vertex representa- 
tions.) The topological  equivalence of different graphs implies their physical equivalence - a 
manifestat ion of duality. 

B C 

0 

A D A D 

A D 

B C B~C 
A D 

A D 

Fig. 5.3. Equivalent 1 and 2 vertex graphs which are members of the same planar class. 

* All possible orbits will have been enumerated when each internal line is seen to have orbits on both sides. The directions of these 
two orbits are necessarily opposite. 
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With the constraint that internal lines must not begin and end at the same vertex, representation 
of connected-part components with h = 0 but more than one boundary requires at least two 
vertices. Consider components with no handles but two boundaries - often called "cylinders". 
Figure 5.4 shows several equivalent 2-vertex representations of a cylinder component. Different 

M 
A B C , D E  

0 

C 

Fig. 5.4. Equivalent 2-vertex representations of a cylinder component. 

graphical representations are useful in connection with different discontinuities. In fig. 5.5 we 
show possible 2-vertex representations of a zero-handle component with 3 boundaries. When 

o ~ "~rL~.~./ ~ • 

Fig. 5.5. A possible 2-vertex representation of a zero-handle component with 3 boundaries. 

handles are present we can still find 2-vertex representations, such as shown in fig. 5.6 for a l-handle, 
1-boundary example. Although all topological information resides in the notation M~ ''b2'" we 
shall nevertheless often find it helpful when considering discontinuities to employ explicit graphical 
representations. 

M 
A B C D  C D 

• ' ' I  --'~ B 

Fig. 5.6. Possible 2-vertex representations for a 1-handle, 1-boundary component. 

Unitarity 
The S-matrix topological expansion is physically useful because it dovetails with the structure 

of the unitarity condition. Suppose that we wish to calculate a two-particle discontinuity in the 
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AB ~ CD channel invariant of a four-line connected part, arising from an intermediate channel EF. 
The general formula has the structure 

diSCABtEF)M A'B'C'D = M C'D'E'F ® M E'F'A'B. (5.4) 

Let us substitute an expansion of the form (5.2) into both sides of (5.4). By using graphical represen- 
tations of the kind shown in figs. 5.3-6, together with Edmonds '  rule, it is straightforward to identify 
the topology of any individual product term and to collect terms of common topology. We find 
first of all 

diSCAR(Ev)MA Bc° = Mo cDEE ® MF6 FAB + M coEv ® M yeas, (5.5) 

corresponding to fig. 5.7, with similar formulas for the discontinuity of MA Boc, MA coR and M ADcB. 

i D E A D-.~A D ~ A  

-- + C ~ O  C" ] "B C" E "B 
(EF) 
Fig. 5.7. Graphical representation of eq. (5.5), for ordered unitarity. 

At the same time the discontinuity of M AcRo and M0 ADBc is found to vanish. We have here precisely 
the discontinuity prescription for an ordered connected part discussed in section 2, a correspon- 
dence that can easily be extended to an arbitrary discontinuity of an arbitrary ordered connected 
part. Assuming amplitudes to be determined by their singularities, we may now therefore consis- 
tently make the postulate that: the sinfle-boundary zero-handle components of the topological 
expansion are the connected parts of the ordered S matrix. In making this postulate we implicitly 
adopt as the basis for our Hilbert space the poles of the ordered S matrix, i.e. the planar particles. 
These particle-poles constitute a suitable basis because the unitarity of the ordered S matrix 
guarantees their factorizability. 

Passing to the discontinuity of cylinder components  with h = 0, b = 2 we find product members 

MCo EDv ® Mo vBEA + M cvDE @ M~ arA, (5.6) 

Mo cED~ ® Mo ~ABF + M~ ~DE ® Mo ~ARE + M~, c~F ® Mg E~R 

+ M~ "cvE ® Mo ErAR, (5.7) 

• CD,AB = (MDCFE M0CDFE) (MFEA, MoFERA) dlSCAB(EF)M0 + @ + 

+ (M~ cEv + MCo DEv) @ (Mo EvAR + M~ FBA) 

+ (Mo CD~E + M~ c ~  + M~ D ~  + M~ ~ )  ® Mo ~,~" 

CD EF EF AB + MoCD'~ ® (Mo ~ R  + Mo ~R~ + Mo ~ R  + M~ E"~) + Mo ' ® Mo 

(5.8) 

with analogous formulas for other orderings. These examples exhibit the kind of unambiguous 
discontinuity formula that exists for each component  of the topological expansion. These are the 

wi thh  = 0 b u t b  = l a s w e l l a s b  = 2 :  

diSCAB(EF)MA C'BD ---- 

diSCAB(EF)MA Bc'D = 
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E F 

(EFI 
F E 

Fig. 5.8. Graphical representation of the cylinder discontinuity eq. (5.6). 

DTU dynamical equations, from which all quantitative predictions flow. In subsequent sections 
we shall return to the above cylinder formulas, which have important physical implications.* 

We do not attempt an exhaustive catalogue of properties for topological discontinuity formulas 
but point out that the number of handles in any product cannot be less than the sum of the number 
of handles in the two product members. Thus the discontinuity formula for a component with 
h handles only involves components with handle number less than or equal to h. We have seen 
an important special case of this rule in the above h = 0 illustrations. Another simple rule is that 
adjacent particles on a single boundary of a product member cannot appear on different boundaries 
of the product. Inspection of our h = 0 sample formulas will verify this rule. We mention finally 
that if a product is to have fewer boundaries than the product member with the larger boundary 
number, additional handles must be created. We recognize in such rules a kind of conservation 
law for degree of complexity which will allow us systematically to build up disorder starting from 
the maximal order of the planar S matrix. Increasing degree of disorder is measured by a combina- 
tion of the number of handles and the number of boundaries.** 

Convergence 
The usefulness of the topological expansion (5.1) depends on its rate of convergence , which is 

believed to be rapid in certain important sectors of the S matrix. Section 4 has reviewed experimen- 
tal evidence suggesting that the components with zero handles and one boundary constitute a 
good approximation in the meson sector. These experimental indications, together with internal 
quantum-number convergence arguments that will be reviewed in section 7, encouraged Veneziano 
in arriving at his proposal. Later there developed awareness [19] of a dynamical mechanism tending 
to suppress components of higher complexity, that is related to the peripheral character of strong 
interactions. The mechanism, to be discussed in the following section, may be described as "peri- 
pheral suppression of nonplanarity"; it stems from the absence of certain singularities from 
ordered amplitudes. 

6. Peripheral suppression of nonplanarity 

In this section we show how the peripheral character of strong interactions tends to suppress 
the importance of nonplanar components within the topological expansion. We begin by expres- 
sing the notion of peripheralism through the concept of "strips" in the space of channel invariants. 

* The intermediate particles E and F may be replaced by ordered clusters of particles to obtain the general cylinder discontinuities. 
** Sursock [-18] has shown that the number of handles and boundaries associated with a product of two ordered amplitudes is 

determined by the transpositions needed to bring the two orders into correspondence. 
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Strip structure of connected parts 
A peripheral amplitude has the property of being small except in strips that run parallel to the 

asymptotic boundaries of physical regions, that is, parallel to the lines s i = 0. Although never 
mathematically proved, peripheralism is believed to be a consequence of Regge behavior. With 
respect to a 4-line connected part the origin of peripheralism is seen in the following considerations: 
Decompose the connected part into two portions corresponding to right- and left-hand cuts in 
some zi - the cosine of the scattering angle in one of the reactions described by the connected part. 
Make an appropriate partial wave analysis of each portion, 

F LR = ~ (2J + 1)es(zs)F~'R(s) 
J 

and express the partial waves through Froissart-Gribov formulas in terms of discontinuities in zi 
and second-kind representation functions of the rotation group [4, 5] 

o0  

1 

The dependence of the partial-wave amplitudes (both magnitude and phase) on angular momentum 
is then seen to be smooth, with exponential decrease at large J controlled by the zi singularities 
nearest to the physical region. 

Because the first-kind representation functions (e.g., P j ( z i )  ) in the ordinary Legendre expansion 
are all positive and maximum at z~ = 1, the "right-hand" (R) amplitude tends there to have a 
maximum. The "left-hand" (L) amplitude has a maximum at z~ = - 1 .  As the scattering angle 
increases, the representation functions become more and more incoherent and the superposition 
of partial waves decreases. The angular rate of decrease is greater the larger is the range of impor- 
tant J, the region of large values of the right-hand amplitude being confined within an interval 
of fixed width in s~, the channel invariant proportional to 1 - z~. A corresponding property holds 
for the left-hand amplitude. Regge behavior is important  to ensure that all partial waves, even the 
lowest one (J = 0 or 1/2) are part of a single smooth trend. Otherwise cancellation through inco- 
herence of the representation functions will not be fully effective. 

The conclusion is that a physical four-line connected part is large only within 3 strips on the 
Mandelstam diagram, as shown in fig. 6.1.* Such peripheral behav ior -  so familiar experimentally 
as to be taken for granted - is highly nontrivial from a theoretical standpoint. Since the underlying 
basis seems to apply separately to each component  of the topological expansion, we shall assume 
that each component  is large only within certain strips. 

Generalization of the strip concept to connected parts with more than 4-external particles is 
tricky because of kinematic constraints on the invariants. A possible resolution of the kinematic 
problem is reached through Toiler variables, each set of which is associated with a tree graph. 
Thus, for a 5-line connected part we have distinct sets of Toiler variables associated with each of the 
tree graphs of fig. 6.2. Each set contains a pair of invariants, associated with internal stems of the 
tree, that may be simultaneously small. We define a "generalized strip" as the region where all the 
channel invariants belonging to a particular Toiler tree graph are small. In other words we make 
a one-to-one association between tree graphs and strips. (The tree-graph generalization of the 

* Our argument has applied only to physical regions, but analyticity considerations suggest that the strip structure is general. 
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Fig. 6.1, Mandelstam diagram for four-line connected part. Strips where amplitude is large are indicated by wavy lines. 
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strip concept adapts itself to ordered amplitudes because tree graphs drawn in a plane are auto- 
matically ordered.) 

Strips in ordered components 
Applying the strip concept to a 4-line ordered connected part one finds either a forward or a 

backward peak in certain channels but not always both. Strips of large amplitude parallel to 
s t = 0 occur only when s i is an adjacent-particle channel invariant, i.e. only when there are singula- 
rities in si.* The strength of the singularities determines the amplitude magnitude within the strips, 
and for ordered amplitudes there are supposed to be poles as well as branch points in all adjacent- 
particle invariants. Experience suggests that, when poles are present, amplitudes within strips 
parallel to the poles are relatively large. We thus expect the ordered amplitude M ABcD to be large 

D E A C D E B C D 

\.col .../ \..0 I.../ \...1.0./ 
/ \ /  \ /  \ 

C B B A A E 

{a} (b) (c) 

Fig. 6~2. Tree graphs used to define Toller variables. 

within the two strips shown in fig. 6.3 and small elsewhere. There is no tendency for Mo ABcD to be 
large in a strip parallel to SAC = 0 because there are no singularities in SAC. When different ordered 
amplitudes are superposed all three strips will of course be populated. 

Poles in nonplanar components 
Since all components of the topological expansion are supposed to be determined by their 

discontinuities, we may infer the singularity structure of nonplanar components from their dis- 
continuity formulas. Now because adjacent particles on a boundary attached to one factor in a 

* It is tempting to associate the nearness of singularities with the size of the amplitude, but such a notion is treacherous and will 
be avoided in this paper. 
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Fig. 6.3. Peripheral strip structure lor four-line ordered connected part. 

discontinuity product never appear on different boundaries of the product, analysis of the dis- 
continuity formulas reveals something like the Steinmann rule: that poles do not occur in channels 
containing particles from more than a single boundary. In other words, particles on different 
boundaries do not resonate with each other.* The point is tricky because channel invariants for 
particles on different boundaries do have discontinuities, as shown for example by formula (5.6) 
for a two-boundary cylinder component. Nevertheless, to the extent that planar poles are "trans- 
mitted" in a process of iteration starting from single-boundary, zero-handle components (the 
ordered S matrix), one expects poles to appear only in adjacent-particle invariants. 

Strips in nonplanar components 
The foregoing pole principle is connected with peripheralism through the assumption that 

amplitudes are large in peripheral strips only when poles occur in conjunction with the associated 
discontinuity. Our general reasoning about peripheral peaks did not include any statement about 
the absolute magnitude of a peak. We are now proposing that peripheral peaking is strong only 
when poles run parallel to the strips. With respect to the strips we have identified for ordered 
amplitudes, parallel poles are guaranteed to be present, and experience suggests that wherever 
strong peripheral strips occur, there are parallel poles. Such a statement is equivalent to saying 
that discontinuities are weak except in the proximity of poles.** So we are led to assume that the 
important peripheral strips in nonplanar amplitudes correspond to fixed small values for adjacent- 
particle channel invariants. 

Let us apply this concept to the two-boundary cylinder component M Aa'c°. We are then led 
to the strip structure shown in fig. 6.4, the important distinction with the ordered strip structure 
of fig. 6.3 being that now there is only one strip instead of two. As will be discussed in section 9, 
at low SAB the cylinder component M A~'~ is just as large as a planar component, but the fact that 
its largeness does not extend over so wide a region will provide a basis for convergence of the 
topological expansion. In particular, fig. 6.4 will be found immediately to explain the increasing 
accuracy of the OZI rule with increasing energy. 

Readers may wonder why a lengthy discussion of the origin of peripheralism was needed in 
order to justify fig. 6.4. A simple statement that the only poles of M AB'cD are in the variable SAB 

* An exception must  be made for a boundary containing only one particle or, equivalently, when all particles on a boundary are 
included in the channel whose resonances are under consideration. This exception is related to the. cylinder renormalization discussed 
in section 8 of the special class of particles carrying zero internal quan tum numbers.  The mechanism discussed in the present section 
should be understood as applying after consistent cylinder renormalization of external particles. 

** Section 11 will describe an evaluation of "weak strips" associated with discontinuities in the absence of poles. 
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Fig. 6.4. The peripheral strip structure for the cylinder component M~ B cD. 
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would not suffice. Such poles might continue to make this amplitude large at large values of SAB. 
It is angular momentum interference that requires smallness except near the physical boundaries 
ZAC = 1 and ZAO = 1. But peaks at these boundaries we have assumed to be small unless there are 
poles in SAC and (or) SAD. The only way to resolve such conflicting requirements is for Mo AB'cD 
to be small over the entire angular range at large SAa. 

The more boundaries a component possesses the fewer poles it can have and the smaller the 
domain over which the component is large. Here is a promising mechanism for convergence of 
the topological expansion with respect to increasing boundary number. But what about handles? 
What, for example, is the basis for expecting that the single-boundary component M ABc° is small? 
We here appeal to the notion, explained in section 7, that a handle is like an internal two-boundary 
cylinder, intermediate particle subchannels flowing into one "boundary" and out the other. 
The implication of fig. 6.4 is then that only low-mass subchannels are allowed to flow through a 
handle. There is no constraint on the energy of intermediate subchannels that pass in an ordered 
fashion on the two-dimensional surface, so the total contribution from ordered intermediate paths 
tends to be greater than that from handles. Section 12 will elaborate the foregoing mechanism. 

7. Internal quantum number suppression of nonplanarity; singlet impotence 

Quark-line diagrams have emerged from two different considerations. In section 5 the "orbits" 
in Edmonds' rule for analyzing nonplanar topological structure were seen to have quarklike 
appearance, while in section 3 Weissmann's analysis of ordered internal-quantum number selection 
rules had already, independently, led to quark-line diagrams. What does one learn from diagrams 
that simultaneously convey information about boundary-handle structure and about internal 
quantum numbers? 

An important observation is that of vanishing net flow of any internal quantum number into 
an individual boundary; more precisely, quantum numbers must flow into each separate boundary 
according to the closed-cycle ( i . . .  i) pattern of fig. 3.3, for the A(i , j) . . .  E(m, i) connected part. 
We shall refer to this as the "cylinder flow pattern" since it applies to the quantum number flow 
through any boundary of a cylinder. 

An arbitrary ordered subchannel will not be compatible with such an extremely restrictive 
pattern. Consider for example a physical A, B, C, D connected part with the family assignments, 
A(n, p), B(p, ).), C()., c), D(c, n). No ordered subchannels here conform to the cylinder flow pattern, 
so in the topological expansion there can occur only single-boundary components M AacD - c o m -  
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ponents with more than one boundary (including cylinders) all vanishing. The foregoing is an 
extreme example but, in general for a given set of particles A, B . . .  the larger the number of boun- 
daries the less likely is the possibility of satisfying the cylinder flow pattern. 

In the presence of SU N symmetry a quantitative statement becomes possible. The pattern of 
fig. 3.3 means that if one forms superpositions corresponding to irreducible representations of the 
symmetry group, only SU N singlet channels are allowed to flow into an individual boundary [20]. 
Singlet channels constitute a fraction inversely related to N of all possible ordered channels, so the 
disfavoring of increasing numbers of boundaries can be related to inverse powers of N. We return 
below to this question. 

It should be emphasized that certain special reactions involving singlet subchannels (such as 
a single ¢p(2,2)) receive important contributions from mult iboundary expansion components. 
Confusion exists on this point with respect to the OZI rule. In particular, the statistical mechanism 

discussed in the present section does not explain the stability of strangeonium and charmonium 
states. As will be seen in section 9, the peripheral mechanism of the preceding section is needed in 
order to understand these celebrated OZI-rule manifestations. 

We next observe that the flow pattern of fig. 3.3 also applies to handles. Consider the single- 
boundary, single-handle example of fig. 5.6. Compressing the four external lines into a local region 
of the boundary so as to focus attention on the internal lines that connect the two vertices, the 
associated quark-line diagram is shown in fig. 7.1 with dotted lines added to identify the handle. 

r . . . .  - ]  

D(~,i) C(k,,~) B(I,k) A(i,j) 

Fig. 7.1. Quark-line diagram for the 1-boundary, 1-handle example of fig. 5.6. Dotted line identifies the quark structure of the handle. 

The internal lines flowing into one end of the handle and out the other are seen to exhibit the (i, i) 
cylinder flow pattern, with the added requirement that the channel flowing into one end is the same 
as that flowing out the other. Although the representation given by fig. 5.6 of a single-handle, 
single-boundary component  is not unique, any representation must contain a subchannel of 
intermediate lines exhibiting the cylinder flow pattern. A minimally-required handle may always 
be visualized as a cylinder that transports a subset of intermediate particles. If the flow pattern 
is not that of a cylinder the handle is not needed [21]. 

It was observed by Veneziano that because of the foregoing extreme restriction the number of 
intermediate channels, with a fixed set of (external) boundaries, will systematically decrease as the 
number of handles increases. Suppose that we think of the topology of fig. 7.1 as arising.in a 3- 
particle AB discontinuity of M ABc°, as indicated in fig. 7.2. Compare to the corresponding planar 
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D(~,i)\ i I i /A(i,j} 

1 J 

C (k,~, B(j,k) 

k 
Fig. 7.2. The three-particle contribution to the AB discontinuity of fig. 7.1. 

discontinuity of Mo ABcD indicated in fig. 7.3. In the former case the intermediate-particle families 
((k, i) (i, i) (i, i)) are completely determined by the external-particle families ((i,j) (j, k) (k ,  l) (l, i)). 
In the latter (planar) case the intermediate-particle families are less constrained, there being two 
free boundary indices (n, m). With N different possible values for the boundary index (N different 
flavors) there are then N 2 different family combinations possible in the planar product's 
mediate 3-particle channel. 

D(~,i ) 

I l i  
! r 

I 

~ A(i,jl 

- ~ B ( j , k )  

Fig. 7.3. A planar, three-particle contribution to AB discontinuity of an ordered connected part. 

Veneziano 1-3] showed generally that products with the same boundary structure, but a 
difference Ah in the number of handles, will differ in the number of intermediate channels by a 
factor (N2) Ah. Herein evidently lies a helpful mechanism for convergence of the topological expan- 
sion. The mechanism is less effective than the experimental fact, N/> 4, might lead one at first 
sight to suppose because there is kinematical (phase-space) suppression of flavors with high thres- 
holds. Intermediate channels of high threshold, that is to say, are in any case unimportant - even 
if allowed by topological selection rules. The existence of charm, in particular, does little to improve 
convergence of the topological expansion. Even strangeness tends to be kinematically suppressed. 
Isospin symmetry nevertheless guarantees an effective value for N larger than 2, so a respectable 
role remains for the Veneziano mechanism.* 

* Simple models allow one to determine an effective N which is approximately 2.5 when symmetry-breaking is taken into account 
I-13, 22], 
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Veneziano's result has been qualitatively restated [13] so as to emphasize the connection 
between boundaries, handles and flavor singlets. When internal symmetry is present we have noted 
that the S matrix may be diagonalized according to irreducible representations of the symmetry 
group, only those channels which are singlets with respect to the symmetry group being allowed 
to pass through (communicate with) an individual boundary. Now we have seen in section 3 that, 
with SU N symmetry, planar particles are grouped into multiplets of size N 2. Within such a planar 
multiplet there is only one singlet state, so the probability that an arbitrary planar particle is 
permitted to pass (alone) into a boundary is 1/N 2. This same factor applies also to any multiparticle 
ordered channel, since the quantum-number  structure is similar to that for a single planar particle. 
Extending the reasoning to intermediate channels or subchannels we see that the probability for an 
arbitrary channel to be able to pass through a handle is 1IN z. Veneziano's mechanism may in 
this way be ascribed to the statistical impotence of flavor singlets. 

We have already warned the reader not to interpret Veneziano's rule as saying that cylinder 
connections between singlet channels are smaller than planar connections. For reactions involving 
external singlet channels, cylinder components (h = 0, b > 1) of the S matrix may be just as large 
as planar components (h = 0, b = 1). Veneziano's mechanism rests on the relative scarcity of 
internal singlet channels - channels that may pass through handles. 

The existence of at least two different convergence mechanisms for the topological expansion 
renders extremely difficult any general analysis of convergence. Additionally, from the bootstrap 
point of view (see the end of section 9) one hopes that eventually N (or, more precisely, the distri- 
bution of flavor thresholds) will be determined by ordered unitarity, so N is not necessarily a free 
parameter in the DTU approach. 

8. Renormalization of planar poles; cylinder unitarity 

The Hilbert space underlying the S-matrix topological expansion is based on the planar particles. 
Although the planar spectrum is not specified a priori, supposedly being determined through 
ordered unitarity (i.e. the "ordered bootstrap"; see section 9), planar poles constitute the fabric 
from which the topological expansion is constructed. Actual poles of the physical S matrix - the 
sum of all components in the topological expansion - will nevertheless not coincide with planar 
poles. Such a slippery situation becomes manageable if we remember that full physical unitarity 
guarantees a consistent factorization pattern for physical poles, just as ordered unitarity guarantees 
a consistent factorization pattern for planar poles. Thus, even though we work in a planar basis, 
we can use factorization to define physical connected parts with physical external particles. 
Figure 8.1 sketches a multiple-pole structure in a physical connected part that has been calculated 

Fig. 8.1. Multiple-pole structure in a physical connected part calculated via factorization from the planar poles. 



Geoffrey F. Chew and Carl Rosenzweig, Dual topological unitarization : an ordered approach to hadron theory 295 

in the planar basis, i.e. with planar external particles. The residue structure in this example allows 
the extraction of 3-line, 4-line and 5-line physical connected parts. 

Although we are aware of no argument that guarantees a one-to-one correspondence between 
planar poles and physical poles, there was implicit in the discussion of section 4 the assumption 
that a correspondence can be made between any planar particle and some physical particle. 
(When planar degeneracies occur, such as isospin degeneracy, it may be necessary to make the 
correspondence via linear superpositions of planar particles.) It is believed, in other words, that 
the physical asymptotic Hilbert space may be larger than the planar Hilbert space but not smaller. 
The simplest possibility - that the two spaces contain the same number of particles - remains 
open, both from a theoretical and an experimental point of view. No mesons have yet been dis- 
covered that cannot be put into correspondence with some planar meson. 

Even should a one-to-one correspondence exist, we must learn how to deal with pole renormali- 
zation. The present section deals with one aspect of this question - related to the cylinder com- 
ponents. We are concerned with poles in a two-boundary cylinder, occurring in the channel 
invariant corresponding to the total (squared) energy flowing into one boundary and out the other, 
that is, "along the cylinder axis". For example in Mo An'CDE we are concerned with poles in SAn = SCDE. 
According to the reasoning of section 7 these poles are also relevant to handles. 

In formula (5.8) we exhibited the two-particle AB discontinuity of M c°'AB. Veneziano observed 
that this complicated formula could be simplified by defining a quantity 

MCoD'AU -- M~ BcD+ Mo BAcD + MAo nDc + M~ ADc + Mo cD'An. (8.1) 

Remembering the planar discontinuity formulas, typified by (5.5), we find, following Veneziano 
[23], 

diSCAa)~CD,AB = }~CoD,EF @ /~EF,AB. (8.2) 

A straightforward generalization can be made for channels with any number of particles [13]. 
One defines/~o Aac .... A'wc'... as Mo Anc .... A'WC'... plus the superposition of ordered amplitudes for 
all cyclic permutations within the two separate subsets. The general discontinuity formula for M o 
then will have the structure of (8.2), a result that may be described as unitarity in a "cylinder Hilbert 
space", where the states are cyclically-symmetric superpositions of ordered channels, each channel 
satisfying the closed-boundary pattern of fig. 3.3. For example the 3-particle (A, B, C) state in the 
cylinder Hilbert space is A) 

1 B 

C 

+ C 

A 

+ A 

B 

(8.3) 

where the particle families are of the type A(i,j) B(j, k) C(k, i). As noted earlier, cylinder channels 
are SU N singlets in the presence of SU N symmetry. The connected parts of the unitary "cylinder 
S matrix" are precisely the amplitudes )W~ Bc .... A'B'C'.... Cylinder unitarity guarantees that the 
poles of these amplitudes should be factorizable. Comparing formula (8.1) to the full superposition 
of zero-handle components in the physical connected part M a'n'c'D, as given by formula (5.2), 
and remembering the general rule about where poles may occur, we see that JW cl)'As subsumes all 
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the zero-handle components that are allowed to contain poles in SAB.* By studying this quantity 
we therefore expect to learn about pole renormalization at the zero-handle level. 

Discontinuity formulas of the type (8.2), which apply also to ordered and to physical connected 
parts, may be projected onto individual partial waves in angular momentum and schematically 
written in the matrix product form 

M + - M -  = 2 i M - p M  +, (8.4) 

where M + and M -  are the same analytic matrix function M evaluated on opposite sides of the 
cut and p is a (diagonal matrix) phase-space factor. Equation (8.4) requires not only that the poles 
of M be factorizable but that poles on one sheet of the Riemann surface be matched by zeros in 
the determinant of 1 - 2 i M p  at corresponding points on the other sheet. Now if we express the 
generalization of eq. (8.1) as 

M 0 = P +  C, (8.5) 

where P is the planar superposition specified above and C is the cylinder, then we see that it would 
only accidentally be true that zeros of det(1 - 2 i M o p )  would exactly coincide with zeros of 
det(1 - 2iRp), R being the matrix of ordered connected-part partial waves of which P is a particular 
linear superposition. In other words one does not expect poles of Mo at the positions of the ordered 
poles. 

On the other hand we discussed in section 6 a systematic peripheral mechanism that is presumed 
to suppress the magnitude of the cylinder except at small values of the energy flowing along its axis. 
If the magnitude of C is small and that of P is not, the poles of M o occur close to the zeros of 
det(1 - 2iPp), which one can show will be close to the poles of R. As the cylinder becomes weak, 
that is to say, the poles of M o either approach the planar poles or their residues become small. 

The reader may be perplexed at what is meant by the cylinder being "small" in the neighborhood 
of a pole of M0 which after all also must be a pole of C if it does not exactly coincide with one of 
the planar poles contained in P. The resolution of the puzzle is achieved by realizing that if M o 
does not contain the planar poles, then C not only possesses the poles of M o but must contain 
additional poles at the location of the planar poles of P - the additional poles exactly cancelling 
those of P. Speaking of a "weak" cylinder means, if P-pole residues are large, that there is close 
coincidence in both position and residue between a pole of Mo and a pole of P, so that in C the 
two corresponding poles almost compensate each other. Turning the argument around, if we 
accept the peripheral mechanism of section 7 as ensuring a weak cylinder component  at high 
(positive) energy where planar poles are not negligible, then we require a near cancellation at high 
energy between pairs of cylinder poles. 

Employing the Regge notion of simultaneous analyticity in energy and angular momentum 
one expects to be able to identify at any energy a correspondence between a Regge pole of Mo** 
and that planar Regge pole which it will approach at high energy. Such an adiabatic connection 

* To simplify the discussion we here assume that each of the four particles A, B, C, D carries nonzero internal quan tum numbers  
so that none can appear alone on a single boundary.  If one or more external particles carry zero quan tum numbers,  then in the order 
of the expansion considered in this section we must  be prepared to identify cylinder renormalization of these external particles. It is 
unnecessarily confusing to consider simultaneously internal and external renormalizations. Factorization guarantees that if we under- 
stand one we also understand the other. 

** It is speculated, a l though unproved, that the only Regge singularities of Mo (and C) in the axis-channel angular  momen tum are 
simple factorizable poles [-24]. 
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allows one to speak of pole "renormalization", even though the renormalization in position and 
residue may become large at low energy - the pole of Mo having very different properties from 
any planar pole.* Note that these large shifts are expected only for poles that communicate with 
channels in the cylinder Hilbert space, which we have seen to be a relatively small subset - SU N 
singlets in the presence of SU N symmetry. 

The general considerations of this section will be given flesh and bone in the models discussed 
in sections i0 and I I, dealing with certain special leading poles. Because discontinuities of topo- 
logical-expansion components with h > 0 never are bilinear in components with this same number 
of handles h, we do not again encounter for any individual component a discontinuity structure 
like formula (8.4) - demanding pole renormalization. So long as one works with a finite number 
of terms in the topological expansion, therefore, it is believed that the only renormalization is 
that discussed in the present section - of poles communicating with the two-boundary cylinder. 
It is believed at the same time, as explained in section 12, that the sum over an infinite number 
of handles will produce renormalization of all planar poles as well as a further renormalization 
of cylinder poles.** Both experimental evidence and the models reviewed in section 12 support 
the view that such general renormalization is quantitatively less important than the cylinder shift, 
which applies only to a modest subset of planar poles. 

9. Multiperipheral bootstrap model of the ordered S matrix 

The ordered unitary S matrix lies at the heart of the topological expansion; unless the concept 
S O makes sense the entire DTU approach is meaningless. The ordered S matrix not only provides 
the logical DTU underpinnings but specifies the planar approximation and all corrections thereto. 
Two intimately-related issues must be faced: (1) Does an analytic unitary S O exist? (2) How can 
S O be calculated? 

The problem of existence is elusive because ordered unitarity, while simpler than physical 
unitarity, still implies an infinite set of nonlinear relations between ordered connected parts. No 
irreconcilable contradiction in these relations has been found but we remain far from a proof 
that a solution exists. So far all attacks on the ordered consistency (bootstrap) problem have 
focused on the presumed simplicity of Regge structure in ordered connected parts. Assuming 
that ordered Regge singularities are all factorizable poles, avenues of approach beckon that seem 
less promising for the full physical S matrix - where Regge cuts and fixed singularities abound. 
This section describes the most promising type of model so far developed for the ordered S-matrix 
bootstrap. The model is crude and represents only the beginning of what may be a long and 
arduous effort. 

In section 6 it was asserted that ordered connected parts are large only in certain "strips". The 
model now to be described depends on this peripheral aspect of strong interactions, together with 
the assumption that contributions from a few leading Regge poles constitute a reasonable ap- 

* For t ~ - o~, where t is the invariant mass squared flowing along the cylinder axis, one does not require the positions of M0 
poles to approach the positions of planar poles even though the cylinder becomes weak, because here the residues of both sets of poles 
independently tend strongly to zero. Pole cancellation at negative t is not required in order to achieve peripheral strip structure for 
the cylinder. 

** Reggeon calculus deals with the relatively small renormalization of the "bare pomeron" - the leading Regge trajectory of the 
cylinder. 
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proximation. We shall be led to self-consistency conditions on the parameters of leading ordered 
poles within strip regions. 

Consider an n-particle intermediate-channel contribution to the discontinuity of the 4-line 
ordered connected part shown in fig. 9.1. (To avoid ambiguity we here mean stable particle when 
we say "particle".) One of the peripheral strips of large amplitude for the ordered amplitude associ- 

ated with the reaction ~ will correspond to the tree diagram of fig. 9.2. For small values 

of sA~ the other reaction occurring on the right-hand side of fig. 9.1 will be large in a corresponding 
strip. Other strips also exist, but the so-called "multiperipheral" strip of fig. 9.2 is expected to give 
the largest contribution in the limit SAc ~ ~ .  Setting as our goal the determination of the leading 

ordered Regge poles in the ( A )  ~ ( C )  channel at small values of SAB, it is then plausible to keep 

only the contribution from the multiperipheral strip. 

I 
O ' C D ~ C  

B A B ~ A 

Fig, 9.1. An n-particle intermediate-channel contribution to the 
discontinuity of a 4-line ordered connected part. 

I , C  
Z 

n A 

Fig. 9.2. Tree diagram corresponding to the multiperipheral 
strip of large amplitude for (C, A) -* (1,2 . . . .  n). 

A well-known property of the phase-space region corresponding to the multiperipheral strip 
is that rapidity ordering tends to coincide with particle ordering 1 . . .  n. Let us then divide the 
total phase space into two segments, assigning some fraction of the total rapidity interval between 
C and A to one segment and the remainder to the other segment. The fraction is unimportant; for 
definiteness we may divide the total interval into two halves. The important point is that among 
the n ordered intermediate particles the subset 1 to i tends to fall into one segment while the subset 
i + ! to n tends to fall into the other. Now suppose that the average rapidity gap between particle i 
and particle i + 1 is large enough to allow factorized Regge representations of the form shown 
in fig. 9.3. Then performing the sum over all possible values of n is equivalent to performing 
independently the sums over all possible number of ordered particles within the two separate 
rapidity segments. By invoking ordered unitarity for 2-reggeon, 2 particle ordered amplitudes, 
we are led to the result shown in fig. 9.4, where it is to be understood that each of the two dis- 

f J 

t+ NN Z t + ~" 
i+ l  i+l  B A n',n" 

I + n ~ A  n" B ~ ', ~A B - n 

Fig. 9.3. A factorized Regge representation for the Fig. 9.4. The discontinuity of the 4-1ine ordered connected part 
right-hand side of fig. 9.1. expressed, via ordered unitarity, in terms of reggeon loop. 
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continuities appearing at the extreme right in fig. 9.4 is evaluated at a sub-s whose upper limit is 
~1/2 corresponding to its half of the total rapidity interval. proportional to ~'AC, 

To the extent that the rapidity gap spanned by the reggeon may be small, it is necessary to sum 
over all possible reggeons - not simply the leading ones - but no investigators have so far seriously 
pursued this point of potentially profound consequences. The assumption has been made that the 
reggeon expansion converges rapidly, a good approximation being given by the highest-lying 
trajectories. Here we keep, for simplicity, only a single trajectory in the loop. 

In the limit of large SAC = S the left-hand side of fig. 9.4 will be dominated by the leading ordered 
reggeon with the quantum numbers of the AB channel, whose trajectory we designate by ~(t), 
where t = SAB. If this reggeon has no physical particles for J < 1 (J = JAB), the point J = 0 being 
already a nonsense point as is the case for the leading physical reggeons, p, ~o, f, A2, then the 
discontinuity in question has the asymptotic structure 

~AB(t)~DC(t) S ~(`), (9.1) 
F(~(t)) 

the gamma function providing the sequence of zeros needed to prevent poles in the amplitude at 
nonsense points. The right-hand side of fig. 9.4 is more complicated, involving the product of 
discontinuities of reggeon-reggeon, particle-particle amplitudes. Consider the discontinuity 
involving the particles A and B, which we designate AAs(s', t, t~_) where s' is the square of the 
"cluster mass". In fig. 9.4 an integration is implied over the invariant s'. Because AAa is the dis- 
continuity of an ordered amplitude with Regge behavior in s' and supposedly with no Regge cuts, 
one expects this quantity to satisfy the sum rule [25] 

S m a x  

f ds'Aaa(s', t, t±) ..~ nyAB(t)O(t , t+) (S~x) ~(')-~('÷l-~(t-) 
sa.x oo r(~( t ) )  ~(t) - c~(t +) - ~ ( t _ )  + 1' (9.2)  

O 

where g(t, t±) is the triple Regge coupling. There will be a similar sum rule for Aoc. We see then 
that in the equation of fig. 9.4 the dependence on the external particles factors out, leaving a 
condition involving only the leading ordered reggeon - a condition with the structure indicated 
in fig. 9.5. 

Remembering that s~ax oc x/~, and using standard rules for the reggeon loop phase space 
together with the ordered single-reggeon propagator ( - s )  ~{'+- IF(1 - 0~(t e)) one finds the schematic 
equation of fig. 9.5 taking the following explicit form, first written down by Rosenzweig and 
Veneziano [26]: 

i 
i 

i 
I 

Fig. 9.5. The planar reggeon bootstrap equation. 

Fig. 9.6. Quark-line diagram for the right-hand side of fig. 9.5 
with the closed quark loop responsible for the factor of N in eq. 
(9.3). 
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f So(t, t+)92(t, t+) 
1 ;r N 

dq~(7(t) - 7(t+) - ~(t_) + 1) (9.3) 

where 

F(1 - ~(t+))F(1 - :¢(t_))cos ~r(~(t+) - ~(t_)) 
So(t, t+) =- [-~(t) - z~(t+) - ~ ( t )  + 1]F(c~(t)) (9.4) 

is the ordered 2-reggeon loop "propagator" .  The factor N is the number  of different equivalent 
ordered reggeon loops contr ibut ing to the r ight-hand side of fig. 9.5; with SU u symmetry the 
quark-line diagram of fig. 9.6 shows that N flavors mean N loops. The loop phase space dq0 in 
eq. (9.3) is 

1 
d~o = ~ dt+ d t _ ( - 2 ( t ,  t+, t_ ) ) -1 /20( -2)  (9.5) 

with 2 the usual triangle function. 
The boots t rap equat ion (9.3) is a nonlinear  condi t ion on the trajectory and residue of the leading 

ordered reggeon. The trajectory is presumed to be a smooth  function, but an infinite sequence of 
zeros and poles is anticipated in the triple-Regge coupling 9(t, t±), as defined here. First it can be 
shown that there must  be zeros at the points ~(t) = ~(t+) + ~(t_) - n, n = 1, 2 , . . . ,  if Regge 
branch points are not to occur in ordered ampli tudes [-25, 27]. At the same time it can also be 
shown that such zeros are redundant  with propaga tor  discontinuity zeros at ~(t) = 0, - 1, - 2  . . . .  
when the helicities e(t+) become physical integers and the triple reggeon coupling becomes a 
part ic le-part ic le-reggeon coupling. We thus expect 9(t, t+) to have the form* 

v(~(t)) 
x smooth  function. (9.6) 

r(~(t) - ~(t +) - ~(t_) + 1) 

With this assumpt ion  it is possible to find approximate  solutions of the ordered boots t rap equa- 
tion (9.3) that correspond reasonably with the experimentally observed properties of leading 
physical Regge trajectories. Before discussing quanti tat ive matters,  let us make a general observa- 
tion. 

Equat ion  (9.3) or its physical equivalent has been derived by a variety of different approaches,  
many  of which require great care in order to avoid miscount ing intermediate states [1, 28-30]. 
Some of these alternative approaches  have called at tent ion to the remarkable  nature of the require- 
ment  that Regge cuts be absent from ordered amplitudes.  For  such to be the case there must  exist 
further sum rules going beyond that of eq. (9.2) [31]. At the time of this writing uncertainty con- 
tinues about  the full implications of the widely-employed assumpt ion  that the only Regge singulari- 
ties of ordered ampli tudes are factorizable poles [25, 27, 31, 32]. The reader should also remember  
that to achieve viable boots t rap  equat ions another assumpt ion  is needed: dominance  of the loop 
by a small number  of leading ordered reggeons. There has been no proof  of convergence of an 
expansion based on the location of ordered reggeons within the loop. 

A less simple but more  accurate approach  to the ordered boots t rap has been made by Chan,  
Pa ton  and Tsou (CPT) [,1]. The physical idea is similar to the foregoing but in counting inter- 
mediate states use is made  of the "cluster" concept  which has proved useful in phenomenologica l  

* Such a form is exhibited by the explicit triple-Regge coupling of the dual resonance model. 
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studies of experimental data. The CPT equations must be studied by computer, but it is corres- 
pondingly possible to be more realistic about kinematical facts of life. Each ingredient in the CPT 
equations has been thoroughly tested for physical meaning. 

Numerical studies of equations of the general type (9.3) have been encouraging. It has been 
possible to satisfy eq. (9.3) over a range 1.0 GeV 2 < t < 1.0 GeV 2 with a linear trajectory and a 
coupling of the form (9.6) [1, 33-35-]. The leading intercept turns out to be ~(0) ~ 0.5 and the magni- 
tude of the coupling is within a factor 2 of that indicated experimentally. The Rutherford Group [1-] 
results, allowing more flexibility in the t± dependence, are even closer to experiment. Balazs, 
by using a modified and extended form of the bootstrap condition discussed here, has derived, 
with no free parameters, a reasonable infinitely-rising trajectory [35-]. 

Of deep significance is the fact that ordered unitarity seems capable of determining both the 
positions and residues of poles. It appears, in other words, that the entire ordered S matrix may 
be determinable from self consistency. A puzzling question in this regard is how the breaking of 
SU N symmetry will be fixed. A preliminary study by Konishi and Kwiecinski [36-] has been based 
on combining a bootstrap equation of the "propagator" type of fig. 9.4 with one of the "vertex" 
type of fig. 9.7. It was found that for small symmetry breaking the pattern of trajectory intercepts 
must follow the "additive quark" rule: 

~ij = ~ + e~ + ej. (9.7) 

For the ordered triple-Regge coupling g'k J, corresponding to the quark-line diagram of fig. 9.8, 
where the discontinuity cuts the Regge pole, the other two legs corresponding to helicity poles, 
the pattern of small symmetry breaking is found to be 

g7 = g + r/k- (9.8) 

The trajectory pattern (9.7), discovered earlier in a variety of less systematic theoretical studies 
[22, 37, 38,], is in striking agreement with experiment. Experimental evidence about couplings is 
still too crude to check formula (9.8). 

~ / CUT ~ . .CUT  

I 

Fig. 9.7. Unitarity bootstrap equation for a three-reggeon 
vertex, 

| |  
I 

Fig. 9.8. Definition of the triple Regge coupling with respect 
to its indices in terms of a quark-line diagram. 

A challenge to and opportunity f o r  the DTU approach is the calculation of the symmetry 
breaking parameters el and r/i. It would seem that ordered unitarity should determine these para- 
meters of the ordered S matrix along with ~ and ~. By the same token, ordered unitarity eventually 
should determine how many flavors occur. Before such questions can be answered, however, 
ordered bootstrap models must be vastly improved over the model-T versions currently available, 
which all have been modest adaptations of pre-DTU approaches. We are not yet close to exhausting 
the full content of ordered unitarity. 
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10. Multiperipheral model for leading cylinder poles 

Section 8 dealt with general aspects of "axis-communicating" poles in the 2-boundary cylinder, 
using as a basis the discontinuity, cutting between the two boundaries, in the invariant that con- 
tains the poles. The present section describes a model of these same poles based on "boundary- 
slicing" discontinuities - in invariants formed by combining a portion of one boundary with a 
portion of the other. Historically it was models of this latter kind, directed at pomeron properties, 
that were in large part responsible for arousing interest in the topological expansion [3941] .  
A remarkable variety of physical insights have emerged from boundary-slicing cylinder models. 

According to standard Froissart-Gribov theory [5] the Regge singularities in JAB -- the angular 
momentum in a reaction AB --* CD - are "built" from the discontinuities in SAC and SAD. One thus 
may hope to construct a model of the AB poles in M~ 8'cD in terms of the AC and AD discontinui- 
ties.* Since both discontinuities are nonvanishing, there is no exchange degeneracy; cylinder 
reggeons carry a signature label. We may nevertheless treat separately right-hand and left-hand 
cuts in the cosine of the angle conjugate to JAR" Let us then proceed to consider the AC discon- 
tinuity of M~ a'cD. 

The form of the two-particle contribution to a boundary-slicing discontinuity has been given 
in formula (5.6) but with a different assignment of particles to boundaries. With the present assign- 
ment we have for the EF contribution 

diSCAc MAB'cD = Mo BEDF ® Mo vc~A + M~ FD~ ® Mo EcFA, (10.1) 

the first term on the right-hand side being depicted in fig. 10.1a, while fig. 10.1b indicates the 
generalization to an arbitrary multiparticle intermediate state. Note how the intermediate particles 
fall into two distinct ordered subsets. 

(a) (b) 

@ B ~ A  B A 

Fig. 10.1. (a) A two-particle contribution to a boundary- 
slicing discontinuity of the cylinder. (b) The generalization of 
(a) to a multiparticle intermediate state. 

C - -  - -  [ 

tl 
- - 2  

ta 

fz 

2 ~ 

--A 

Fig. 10.2. The multiperipheral strip which is assumed to domi- 
nate the ordered amplitude appearing on the right-hand side of 
fig. 10.lb. The significance of the dots is explained in the text. 

The leading JAB singularities are related through the Froissart-Gribov projection to the asymp- 
totic behavior of the AC discontinuity as SAC ~ ~ .  Since each of the factors in an individual 
contribution to the cylinder AC discontinuity is an ordered connected part, whose asymptotic 
behavior is controlled by ordered reggeons, one hopes to relate the leading cylinder Regge singulari- 

* Recall (section 6) that there are no poles of Mo Aa'CD in the invariants SAC and SAO. Regge branch points in these channels play an 
important role in the considerations of section I 1. 
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ties to the leading Regge poles of the ordered S matrix. It is necessary however to sum over an 
infinite number  of individual contr ibut ions to the AC discontinuity.  

Multiperipher al model 
One assumes dominance  by the mult iperipheral  strip of fig. 10.2, characterized by small magni-  

tudes of the invariants tl,  t 2 , . . . .  We have here a model  analogous to the ordered boots t rap models  
discussed in section 9. The difference is that  the ordering of the subset i, 2, 3 , . . .  is independent  
of the subset 1', 2', 3', . . . .  In other words, we have as many different strips as tree graphs that  
interleave the two sequences in different ways. But if we assume for a particular tree graph (i.e. a 
particular strip) that  the rapidity interval between a particle in one subset and a "neighboring 
particle" (in the sense of the tree graph) in the other subset is large enough to permit  reggeon 
factorization at that link, then we can sum over all tree graphs (all strips) and obtain a simple 
result. Such an assumpt ion  is at least as justified as was the reggeon factorization that  allowed 
construct ion in section 9 of the mult iperipheral  ordered boots t rap  model. In both  cases quest ion 
must  be raised about  single-reggeon dominance  of a modest  rapidity interval. 

In fig. 10.2 we have marked  with dots those links in the Toiler graph that  join a particle in one 
subset with a particle in the opposi te  subset. Each way of distributing dots along the chain corres- 
ponds  to a different strip. A possible way to perform the (triple) summat ion  over the particles in 
each subset as well as the distr ibution of dots is to fix first the number  of dots and sum over all 
possible numbers  of particles between dots. Since by construct ion all particles between dots belong 
to the same ordered subset we are thereby performing the summat ion  that  yields the discontinuity 
of an ordered connected part. See fig. 10.3. The cylinder AC discontinuity then assumes the form 
shown in fig. 10.4, where an integration remains to be made  over each reggeon loop between 

t .  

Z 2 
n rl  

|+ 

t" 

a ( t - ) ~ t ~ )  

Fig. 10.3. Summat ion  over subset of intermediate states which leads to a discontinuity of an ordered, four-reggeon connected part. 

D , C ' O i ,C 

O ~ A  = + + + . . . .  
I 
I 

A 
Fig. 10.4. The AC discontinuity of fig. 10.1 after the summation,  as discussed in the text, over intermediate states is performed. 
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ordered clusters, the loop phase space being similar to that in fig. 9.4. Each cluster mass also is 
to be integrated over, but a significant difference between the equation represented in fig. 9.4 
and the equation in fig. 10.4 is that for the former we had to restrict the rapidity interval covered 
by each ordered cluster so as to avoid double counting. There is no such restriction on the clusters 
in fig. 10.4; each is allowed to span the full kinematically-allowed range of cluster masses. 

Charge conjugation and signature 
What is the significance of the nonplanar-product ordering indicated for the reggeon products 

in fig. 10.4? In effect the order of lines in every alternate ordered discontinuity is reversed with 
respect to planar-product ordering. If it be recalled that the reggeons arose from links in Toller 
graphs between nonadjacent particles in ordered amplitudes one realizes that the reggeon propaga- 
tors in fig. 10.4 should all be real; i.e., there are no associated discontinuities. Here is another 
significant difference between fig. 10.4 and fig. 9.4, where reggeon propagators carry a phase e i~'. 
A further significance of the ordering in fig. 10.4 relates to charge conjugation, as discussed in 
section 2. The rule presented [11, 12] was that reversal of order in an ordered connected part 
changes the phase by the product of charge-conjugation symmetry factors. Ordered reggeons 
do not have well-defined charge conjugation symmetry but they have well-defined values of the 
product of signature and charge conjugation symmetry. Let us call this parameter 4i = +-1. 
Combining the foregoing considerations into a single rule we may say that reversal of order in a 
reggeon ordered connected part changes the phase by the product of factors ~i exp (inct 0 for each 
reggeon. For physical particles this factor is just charge conjugation symmetry. 

Using the foregoing rule we see that the first term on the right-hand side of the equation in 
fig. 10.4 differs from the corresponding planar product not only by the reggeon propagator phases 
exp {iTz[~(t+) - ~(t_)]} but by the charge conjugation symmetry of the AB ~ CD (cylinder axis) 
channel.* This term is positive for positive charge conjugation and negative for negative charge 
conjugation. The same will be true for all terms with an odd number of reggeon loops; those with 
an even number have the same value for both odd and even charge conjugation. 

When the AD discontinuity is considered, the relative signs are such that positive signature 
carries positive charge-conjugation symmetry and negative signature carries negative charge- 
conjugation symmetry. Keeping track of charge conjugation will thus simultaneously identify 
signature. 

Cylinder Regge poles 
Examination of the series in fig. 10.4 reveals that for forward elastic scattering (B = A, D = C), 
where all terms are real and positive, the left-hand side must asymptotically grow with SAC at 
least as fast as the discontinuity of an ordered connected part. The leading cylinder Regge sin- 
gularity, in other words, cannot lie below a. 

To understand as well as possible the leading cylinder singularities, let us now exploit the 
analysis in section 8 showing that pole structure is simplified if certain planar terms are added to 
the cylinder so as to form M0 AB'CD. Taking the SAC discontinuity of/~0 AB'CD, we are led to augment 
the right-hand side of the equation in fig. 10.4 by the ordered terms shown in fig. 10.5. It may now be 
recognized that if external particles are replaced by the reggeons appearing internally we have 

* We here a s sume  that  the two reggeons forming a loop are the same so that  (i¢i = 1. Such need not a lways be the case. The  leading 

~ = - 1 t ra jec tory  is the A 1. 
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Fig. 10.5. An ordered term to be added to the discontinuity of 
fig. 10.4. 

Fig. 10.6. The linear integral equation for the discontinuity of 
Mo. 

achieved a linear integral equation for the discontinuity of M 0, where both the inhomogeneous 
term and the kernel are controlled by the four-reggeon ordered discontinuity. The structure of 
the equation is schematically indicated in fig. 10.6, where the crosses on the reggeon lines indicate 
the two phase requirements associated with order inversion: (1) The reggeon propagators are real. 
(2) The loop integral reverses sign when charge conjugation symmetry is reversed. 

Diagonalizing the equation of fig. 10.6 with respect to axis-channel angular momentum will 
put it into Fredholm form [10] and allow the cylinder to be constructed from a knowledge of the 
ordered S matrix, even though the poles of the cylinder are shifted. The equation also can be solved 
by direct numerical iteration [I, 2]. Let us consider the pole-shifting phenomenon in terms of 
formal Fredholm theory. Suppose that projection has been made onto a definite (continuous) J, 
so as to yield a matrix function ~to(J, t) (J = JAB, t = SA~) in the space of a pair of ordered-reggeons.* 
The equation of fig. 10.6 then takes the operator form 

Mo(J, t) --- R(J, t) + R(J, t)Scy~(t)Mo(J, t) (10.2) 

in the ordered reggeon Hilbert space. The operator R(J, t) is analytic in J except for poles at 
J = ~i(t), the trajectories of the ordered reggeons; the singularity structure in t is standard. The 
twisted-loop "propagator" Scyl(t ) is a diagonal operator in the 2-reggeon space whose form will 
be discussed below. Equation (10.2) may be formally solved to give 

Mo(J, t) = [1 - R(J, t)S~y~(t)]- 1R(J, t) = JR(J, t)- 1 _ S~y~(t)]- 1, (10.3) 

a result showing explicitly that -Mo(J, t) is finite at the poles of R(J, t), as expected from the more 
general argument in section 8. The poles of M0(J, t) occur at points where 

det JR(J, t)- 1 _ S~y~(t)] = 0, (10.4) 

points which systematically approach the positions of ordered poles when the "propagator" 
Styx(t) tends to zero. In such a sense there will be a one-to-one correspondence between poles of 
M o and ordered poles of appropriate quantum numbers. According to the multiperipheral model 
the cylinder shifts poles but does not create new ones [12, 42, 44]. 

Cylinder quenching 
In sections 6 and 8 it was argued that the cylinder shift of ordered poles should approach zero 

as t ---} + ~ .  Within the model considered here, such an effect requires that Styx(t) ~ 0 as t ---} + oo. 
Since the model is based on a low-t strip approximation it cannot be taken seriously for large t 
but one expects to see a tendency in the direction indicated by general arguments. 

* The reggeons in this space correspond to helicity poles. 
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The cylinder loop propagator Scyl(t), a diagonal operator in the space of helicity poles, ~(t+), 
~(t_), differs in two ways from the corresponding untwisted reggeon loop propagator in the multi- 
peripheral ordered bootstrap (eq. 9.3): (1) Scyl reverses sign when charge conjugation (or signature) 
is reversed, (2) Scy~ carries no factors ei'tt± ). These differences translate in effect into the replacement 
of So(t, t±) as given in formula (9.4) by 

So(t, t +, t_) 
Scyl(t , t+, t_) = _+ 

c o s  - 

It is the inverse cosine factor, arising from 
quenches Scyl(t) for large positive t. 

To see this quenching it is convenient to change variables from t± to k and w according to 

 10.5) 

reggeon phase change under order inversion that 

= + 

we then have 

1 

0 - - o 0  

For a linear leading ordered trajectory 

1 
= (10.9) 

t cos zt[0~(t+) - a(t_)] cosh 2~za wx/t 

which for positive t produces a quenching of the 2-reggeon "propagator". At negative t there is 
no quenching; a point to which we return below. 

The reader may be puzzled by the fact that the function So(t, t±) was defined in eq. (9.4) to contain 
a cosine factor. How can it be claimed that quenching results merely by eliminating the cosine? 
The explanation can be given in either of two alternative forms: 

(1) Formula (9.4) for So(t, t+) contains a product of gamma functions with the cosine factor, 
there being an important sense in which the product is simpler than the gamma functions alone. 
This sense relates to the requirement that ordered particle-pole residues all have the same sign; 
such a property is manifested by the product 

e i'r'lt ~)F(1 - ~ ( t + ) )  

but not by the gamma function alone - whose poles at ~(t+) = 1, 2 . . . .  have residues that alternate 
in sign. Coherence of ordered poles is an essential facet of ordered unitarity; the coherent ordered 
propagator, if written in terms of a gamma function, must carry an additional alternating factor 
( - 1 ) ' =  e i~. By removing such a factor, residue sign alternation is generated [46, 47]. Such 
incoherence reflects a decrease in order when passing from the planar S matrix to the cylinder 
and makes the cylinder small for large positive t. One notes the similarity of such a mechanism 
to that producing "peripherality" (discussed in section 6): destructive interference between different 
angular momentum values. 

(10.6) 

t10.7)  

(10.8) 

t+ = ¼ t - k  2 - w  2 + w ~ - ~ ,  

the loop phase space in the new variables becoming 
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(2) Since the ordered bootstrap equation (9.3), with a left-hand side independent of t, is supposed 
to hold over a range of t values the integrand on the right-hand side must on the average be inde- 
pendent of t; t dependence from the cosine factor in So(J, t±) must be compensated by t dependence 
from gamma functions. One then recognizes that a positive-t quenching tendency will result from 
removal of the cosine factor. The averaging notion will be exploited below to obtain a transparent 
formula for the cylinder shift of the leading planar pole. 

Restriction to a finite number of  ordered reggeons 
The kernel of the cylinder integral equation (10.2) is determined by the ordered amplitude 

(R(J, t), whose poles are factorizable. In consequence, if we approximate R(J, t) by a finite number 
of Regge poles we achieve a kernel in the form of a finite number of factorizable terms. The integral 
equation then becomes equivalent to a set of linear algebraic equations coupling together the 
different ordered poles. In a vector space based on these poles let us define the diagonal pole 
matrix 

P(J, t) = 

1 

[ J  - 

0 

0 

0 0 

1 
0 

[ J  - 

1 
0 

[ J  - 

(10.10) 

as well as the off-diagonal cylinder loop matrix 

knm(t) = ~ f Scy~(t, t±)gn(t, t±)gm(t, t±) (10.11) 

corresponding to the twisted quark-line diagram of fig. 10.7. The loop reggeons are understood 
to be the highest-lying ordered reggeons in the families appropriate to the involved vertices. The 
g, are the corresponding ordered triple-Regge couplings. The cylinder equation then assumes the 
(finite) matrix form 

Mo(J, t) = P(J, t) + P(J, t)k(t)Mo(J, t), (10.12) 

with the eigenvalue condition determining the cylinder poles: 

det [P-  l(j, t) - k(t)] = 0. (10.13) 

i 

i 
III 

Fig. 10.7. Twisted quark-line diagram for the cylinder loop matrix. 
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Simple pole-shift formula with SU N symmetry: emergence of the pomeron 
Suppose only the leading SU n multiplet of N 2 ordered poles is kept in approximating R(J, t). 

With SU n symmetry one may make superpositions corresponding to irreducible representations, 
and the cylinder will be found to couple only to the SU n singlet. The corresponding cylinder pole, 
according to (10.13), is located at 

J = ~(t) + A~(t) (10.14) 

where 

A~(t) = Nk(t). (10.15) 

(With SU u symmetry all N 2 elements of the matrix k are equal.) Comparing formulas (10.11) and 
(10.5) to (9.3) we see that* 

/ ~ ( t ) - ~ ( t + ) - ~ ( t - ) +  1~ 
Ac~+(t) = - c o s n ~ i  ~- ~t_j]-  ' (10.16) 

the average being taken over the loop integral with the weighting function of (9.3). The plus sign 
goes with even charge conjugation symmetry and the minus sign with odd. The numerator of 
(10.16) increases linearly with t but the denominator  increases exponentially, so the shift tends 
strongly to zero as t -~ + or. 

Formula (10.16) was first obtained at t = 0 and positive charge conjugation by Lee [39]. At 
this especially simple point where t+ = t_ we have 

A~ + ( 0 ) = ~ ( 0 ) - 2 ( ~ )  + 1, 

so the leading cylinder pole is located at 

~+(0) = a(0) + A~+(0) = 1 + 2[~(0) - (7} ] .  (10.17) 

Thus, if the strip width on the negative-t side is small so that (~ > ~ ~(0), one expects the leading 
cylinder pole to have the t = 0 properties of the pomeron:  intercept near 1, even charge conjuga- 
tion, positive signature and zero isospin. 

Interpretation of the leading multiperipheral cylinder-model pole as the pomeron has not been 
universally accepted, because of the implication that the pomeron is the upward-shifted leading 
planar trajectory carrying the same quantum numbers as the pomeron. Such a trajectory, as we 
saw in section 4, contains as its first particle pole a good approximation to the fmeson (jPc = 2 + + ). 
According to the multiperipheral cylinder model, the pomeron trajectory contains the f meson; 
there is no separate f trajectory. A variety of arguments (which we comment  on below) have been 
made to suggest that the pomeron should be a "new" singularity - not already contained in the 
planar spectrum. These arguments are insufficiently compelling, however, to require abandonment  
of the model described in this section. Having alerted the reader to a point of controversy, we 
continue to discuss the multiperipheral model's consequences. 

Formula (10.16) turns out to be less meaningful for negative charge conjugation symmetry 
than for positive because of the influence of neglected lower-lying poles in R(J, t). The direction of 
the cylinder shift of the leading odd charge conjugation pole is downward, bringing it into close 

* The extra  factor  of ~(t) - a(t+) - ~(t_) + 1 comes from the difference in the phase  space in tegra t ion  between the p l ana r  and  
cy l inder  loops.  
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proximity with lower-lying poles. The calculation must then be expanded in order to be meaningful. 
With the availability of computers it is of course possible to avoid inessential approximations. 
We have discussed formula (10.16) because of its historical role with respect to the pomeron and 
because it exhibits so explicitly the magnitude of the cylinder shift, including the large-t damping. 

The cylinder and SU3 symmetry breaking 
It was remarked in section 3 that the OZI rule takes on different aspects depending on whether 

SU N symmetry breaking is large or small compared to deviations from planarity. Now that we 
have a model of the cylinder we can explore this subtle question. Let us assume that SU2 symmetry 
is exact but that the breaking of SU a symmetry in the ordered S matrix is similar to that observed 
for the physical S matrix. We assume, in particular, on the basis of the observed mass difference 
between physical o9 and physical t# (or between f and f) that the shift between leading ordered 
trajectories of the (n, n) or (p, p) class and those of the (2, 2) class is about 0.4 units of J. We then 
have the interesting situation that for t < 0 the cylinder shift is comparable to or larger than SU3 
symmetry breaking while for large positive t the cylinder shift is smaller. We now describe a simple 
model that allows study of the transition between these two regimes. 

Suppose that in R(J, t) we keep the leading poles in each of the 3 families (n, n), (p, p) and (2, 2). 
To achieve maximum simplicity let us follow ref. [42] and assume that symmetry breaking of the 
ordered pole positions in P is more important than symmetry breaking of the cylinder coupling 
coefficients k. Such a simplifying assumption, although inessential, is consistent in spirit with the 
general pole-dominance approach; all nine cylinder elements are then approximated by a single 
number k(t). SU3 symmetry breaking is entirely characterized by the ordered-trajectory spacing 
A(t) 

~l(t) = ~2(t) -- eta(t) + A(t), (10.18) 

the displaced trajectories and associated eigenvectors being determined by the ratio between k(t) 
and A(t). This ratio, that is to say, determines the degree of OZI-rule violation. Models of this type 
have been extensively studied in the literature; we now describe the qualitative lessons that have 
been learned. 

At large positive t where k(t) is smaller than A(t), the cylinder shift of each ordered trajectory 
not only is small but the coupling shifts are also small. After projection on I = 0, the underlying 
ordered Hilbert space becomes reduced from three states to two, f - f for even charge conjugation 
and o9 - (p for odd charge conjugation. The coupling shift may consequently be characterized for 
each pole by a "mixing angle", giving the superpositions of the two ordered states that constitutes 
the associated eigenvector of Pk. Cylinder mixing angles are zero in the limit k --* 0 corresponding 
to f and o9 being purely of the type [(p, p) + (n, n)]/x/~ while f and tp are purely of the type (,~, 2). 
The mixing angles are proportional to k(t) for small k(t) and grow in magnitude as t diminishes. 
Trajectory shifts also grow with k(t); f and f trajectories are displaced upward while o9 and ~o 
trajectories are displaced downward. The sign of the mixing angles is such that f and ~o move in the 
direction of becoming SU 3 singlets as the ratio k/A grows, while o) and f tend to become SU 3 
octets. All estimates agree that near t = 0 the magnitude of k/A is of the order unity so that the 
eigenvectors are roughly halfway between the ordered (sometimes called "ideal") limit and the 
"strong cylinder" limit corresponding to irreducible representations of SU a. Most models predict 
that as t becomes more and more negative the ratio k/A will continue to increase, making SU a 
symmetry more and more accurate for cylinder-communicating poles. 
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The latter point can be confusing because, according to the peripheral strip hypothesis (section 6) 
the cylinder amplitude M AB'cD is small except for small values of It[ = [SABI. However ,  the cylinder 
amplitude is proportional to k(t) only for small k; the cylinder coupling k(t) may be large even 
though the cylinder amplitude is small. The quantity k(t) controls the shift of a trajectory and its 
SU 3 content but does not control the magnitude of the Regge residue, which throughout maintains 
the same order of magnitude as the ordered residues. 

All the foregoing features find at least qualitative support from experiment, as discussed in 
refs. [48-51]. We have seen in formula (10.16), which is an approximation to + 3k, that the magni- 
tude and sign of k at t = 0 is satisfactory. Assigning to k a roughly exponential variation with t, 

k(t) oc e -t/tc, (10.19) 

with the "cylinder-quenching interval" t c ~ (~')-t, semi-quantitatively correlates such diverse 
experimental facts as the pomeron slope, the f -  A 2 mass difference, the difference between ~p 
and Kp high energy elastic differential cross sections as a function of t, and the deviation of tp from 
ideal mixing. (The latter point is treated further in section 11.) If the averaging indicated in formula 
(10.16) is carried out with the ordered triple-Regge couplings that satisfy the ordered bootstrap 
equation (9.3), one indeed finds for small It[ a t-dependence close to (10.19) [19, 34, 45, 51]. The 
multiperipheral model of the cylinder thus appears in good shape from an experimental standpoint. 

Pomeron-f identity 
The pomeron-f identity is a source of uneasiness about the cylinder model described in this 

section. Many physicists are troubled, partly because of the phenomenological successes [52] of 
the Harari-Freund picture employing exchange-degenerate p, f, A2, ~ plus a pomeron, and partly 
because of QCD expectations of "glueballs" - states made of gluons rather than quarks. (The 
highest gluebaU trajectory is expected to have the quantum numbers of the pomeron.) We are not 
deeply concerned about the latter viewpoint as such, partly because no reliable way yet exists to 
evaluate the QCD predictions for glueballs and partly because the poles of the ordered S matrix 
should not be viewed as literal q~l composites. The quark-line diagrams of the DTU program are 
merely representations of ordered relationships. We are more concerned about reasoning by 
Veneziano [53], stimulated by QCD but within the DTU framework, which calls attention to the 
artificial nature of the reggeon links in the equation of fig. 10.4. Veneziano points out, for example, 
that particle 1' in fig. 10.2 can resonate with particle 2', even though these particles appear in two 
separate clusters in the equation of fig. 10.4. Veneziano urges that in neglecting such correlations, 
the distinctive character of the pomeron may have been lost. We have two remarks in response to 
Veneziano's concern: (1) The same criticism of artificial separation may be made of the ordered 
bootstrap model. Particles in the first cluster in fig. 9.3 actually can resonate with particles in the 
second cluster. Factorization on a reggeon link is a questionable feature of any multiperipheral 
model; it does not seem to us especially dangerous for the cylinder model. In fact, because the 
definition of the strip region of fig. 10.2 demands rapidity ordering, the requirement that at least 
one particle of the opposing subset stand in rapidity between particles 1' and 2' means that the 
rapidity gap between the latter will on the average be larger than the rapidity gap separating the 
two clusters of fig. 9.3. Reggeon factorization may thus be a better approximation for the cylinder 
model than for the ordered model. The neglected correlations should in principle be accounted 
for by including nonleading reggeon exchanges. While one expects these lower trajectories to 
change the quantitative results, whether they will change the results qualitatively, as Veneziano 
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suggests, is an open question 154, 55]. (2) The physical picture of the pomeron as the shadow of 
multiperipheral-dominated production processes, emerging from the above model, coincides with 
the bulk of particle-production phenomenology. More detailed models, making contact with 
this phenomenology, find the f intercept to be shifted from near 0.5 to near 1.0. 

So far as the phenomenological successes of the Harari-Freund picture are concerned, we believe 
that the multiperipheral cylinder model has already gone further in explaining experimental 
facts.* In addition, the general unitarity arguments of section 8 show that the f cannot survive 
- maintaining its ordered position and residue - when the cylinder is added. Even if the pomeron 
is a new singularity, with no counterpart in the planar spectrum, cylinder unitarity still requires the 
f to undergo a substantial shift. 

Unnatural parity 
Although not yet as well understood, the cylinder shift of leading unnatural parity trajectories 

deserves mention. Employing the multiperipheral model in the same spirit as for natural parity, 
one expects shifts of the four ! = 0 trajectories r/, r/', H and H' away from the I = 1 n and B trajec- 
tories 1,58-60]. The magnitude of k(t) needed here to explain the experimentally-observed shift of 
~/and n is similar to that for natural parity, but the sign of the required cylinder loop coupling 
is reversed. The latter fact has been explained by Millan through the nonidentity of the two ordered 
reggeons in the loop 1-61, 62]. Unnatural-parity ~vithin the cylinder is clouded by uncertainty 
concerning unnatural parity at the planar level. Because the two ordered reggeons within the 
leading loop here have different trajectories (having opposite naturality), reggeon phase factors 
play a role qualitatively different from that for purely natural parity. Finding a consistent ordered 
triple-Regge coupling g(t) is tricky when there is a displacement between the two helicity poles [34]. 
It is plausible that solution of the problem will involve a dynamical zero physically related to the 
Adler zero, since the most successful dual resonance models of nn amplitudes have contained such 
zeros when the spacing between n and p trajectories is approximately 0.5 [6]. At the time of this 
writing, a consistent unnatural-parity multiperipheral ordered bootstrap model remains a tantaliz- 
ing goal. When such a model is achieved, the corresponding cylinder model will unambiguously 
follow. 

11. Cylinder violation of O Z l  selection rules 

Section 10 has discussed the breaking of isospin and exchange degeneracy - cylinder violations 
of planar regularities. Also discussed have been the coupling shifts of ordered reggeons away from 
the "ideal" ordered limit - another departure from the maximal regularity of the planar S matrix. 
We did not, however, explicitly discuss the violation of OZI selection rules, for the reason that 
most of the experimental evidence regarding the latter requires going outside the low-t strip - into 
a region not describable by the multiperipheral model. The latter model does describe the transverse 
structure of the low-t strip cylinder damping resulting from pole-residue sign alternation in reggeon 
propagators. Nevertheless, large positive t requires an understanding of two other, quite different, 

* Careful comparison with experiment requires attention to threshold effects, as emphasized especially by Dash and collaborators 
[56, 57]. 
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strips. The present section will describe a large-t model based on Regge branch points in the 
cylinder. 

The reader should remember that we are continuing here to deal with the same component  of 
the topological expansion as formed the subject of sections 8 and 10; the discontinuity formula 
underlying our analysis of cylinder unitarity will also form the basis for the Regge-cut model. 
In moving from small t to large t, physical emphasis shifts from Regge-pole properties to the viola- 
tion of OZI selection rules, but both categories of physical effects are controlled by the cylinder. 
With the aim of firming this bridge in the reader's mind, we begin the present section by explicitly 
relating OZI-rule violating decays of~0 and f to a rough but conceptually useful notion introduced 
in section 10 - that of mixing angles. 

Mixing angles 
Approximating the cylinder through only two ordered poles such as ~0 and to (odd charge con- 

jugation) or f and f (even charge conjugation) allows pole-residue shifts to be represented by a 
mixing angle. The coupling in the multiperipheral model is to the set of channels that dominate 
the ordered bootstrap, but the same mixing angle applies to all channels. In conventional quantum- 
mechanical notation one expresses such a notion by writing 

J~Ocy,(t)> = cos o-(t)I~Oora(t)) + sin O-(t) I toord(t)), (1 1.1) 

I~cy l ( t )~  -~ - s i n  O-(t)]~Oord(t)) + COS 0-( t )  I toord( t ) ) ,  (1 1.2) 

with a corresponding pair of formulas for fcyl and fcyl in terms of an angle 0 +. These formulas 
arose in describing ratios of couplings to the dominant  2-reggeon loops in the multiperipheral 
equations. For example 

M(f'cyl ~ P+rd + P~rd) "~ sin O+(m2, )M( ford  ~ Po+rd + P~rd) (l 1.3) 

but in an approximation based on only two ordered poles the same angle O+(mZr) also describes 
the relative couplings of f and f to re+re -. The measured ratio between the OZI forbidden decay 
f' ~ nn and the allowed decay f ~ rcn then translates into a value of 0 +. 

The notion of a single angle to describe all coupling ratios for a pair of trajectories can at best 
be a rough approximation, since many more than two ordered poles communicate through the 
cylinder, but as a way of compactly characterizing certain types of OZI-rule violation, the mixing 
angle concept is widely employed.* We shall often in this section, for example, refer to the experi- 
mentally-measured value of - 2 0 (rn~,), based on the ratio of the forbidden decay ~0 --, p + rt to the 
allowed decay to ~ p + n, tacitly treating O-(m2~) as an intrinsic property of the physical ~o - inde- 
pendent of the channel to which q~ may be coupled. 

We have discussed how, in the cylinder multiperipheral model, the mixing angles O+(t) are 
proportional to twisted loop integrals when the latter are small. For example, in the simplified 
model of section 10 that was characterized by the single ratio k(t)/A(t), one finds [42] 

O+(t) ~ + x/~ k(t)/A(t). (11.4) 

Although at large t the multiperipheral model eventually loses validity, one may continue quali- 

* One important difference in our use of the mixing angle is that we explicitly consider the t-dependence (mass-dependencej of 
mixing angles. 
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tatively to think of OZI-rule violation in terms of mixing angles, and it may be hoped that at the 
physical ~o and f masses - on the "fringe" of the strip - formula (11.4) maintains qualitative signifi- 
cance.* In section 10 we pointed out that the small measured values of O-(m 2) and O+(m2,) are 
compatible through formula (11.4) with the large pomeron-f shift at t = 0 if k(t) is an exponentially 
decreasing function. One of the special virtues of (11.4), which so far as we know is not shared by 
other models, is that it correctly predicts the signs of the mixing angles O+(m 2) and - 2 0 (m~) in 
addition to their magnitude. 

If the mixing-angle concept is applied to the unnatural-parity r/ - r / '  system, experimental 
measurements imply that 0 ÷ (m 2) and 0 ÷ (m2,) are much larger 1-58, 59, 66] than the corresponding 
mixing angles for natural parity. The smallness of the r/mass leads us here to expect large deviation 

2 2 from ideal coupling, but the substantial deviation observed for r/', even though m,, ~ m~ ~ 1 GeV 2, 
implies a slower cylinder quenching rate for unnatural parity than for natural.** Put differently, 
the low-t strip appears to be broader when the cylinder carries unnatural parity. Nevertheless 
the r/ - r/' system can be successfully described in terms of mixing angles, with the t-variation 
(i.e. O+(m 2) > O÷(m2,)) now very important [58, 59]. 

Regge-cut model of the cylinder 
To handle large values of t, outside the strong low-t cylinder strip, a model has been proposed 

by Veneziano [-23] and by Chan, Kwiecinski and Roberts [67], that is based on the other two 
cylinder strips, which are weaker because of the absence of parallel poles but which nevertheless 
dominate Mo AB'c° as SAB(t) --* O0 at either fixed SAc or fixed sag. Cylinder-communicating states of 
high mass but low angular momentum may then be considered. 

The model rests on the discontinuity (5.8), cutting between cylinder boundaries, that formed 
the basis of section 8. For present purposes, assuming the cylinder to be weak for large SAB, we 
neglect all terms in the discontinuity formula that contain the cylinder itself and keep only products 
of ordered amplitudes, i.e. four terms of the type shown in fig. 11.1. Two of these terms tend to 
populate the strip where SAc is small and two populate the strip where SAD is small. We focus atten- 
tion on the former. Let us tentatively assume that the intermediate-particle cluster (1 ,2, . . .  n) 
tends to be separated in rapidity from the cluster (I', 2 ' , . . .  n'), so that the link between the clusters 
may be represented by the leading reggeon with appropriate quantum numbers. Summing over 
particles within the two separate clusters then leads to the approximation schematically indicated 
in fig. 11.2. Remembering the strip structure of ordered amplitudes discussed in section 6 (see 
fig. 6.3), we see that for small SAC = SBD the separate ordered discontinuities appearing on the 
right-hand side in fig. 11.2 are large only when their other channel invariants are also small. The 
cluster masses, in particular, tend to be small - confirming a posteriori the assumption of a large 
intercluster rapidity gap. As in previous models one must integrate over cluster masses, but ordered 

* The multiperipheral cylinder model contains a mechanism, also deducible from general unitarity arguments [19, 63-65], that in 
effect gives an imaginary part to the mixing angle. In the loop integral there occur channel thresholds, associated with poles of the 
reggeon propagators, and careful evaluation produces an associated imaginary part of k(t) for t above these thresholds. Physically 
one may say that tp (or f) decays into KK which then makes a transition via oJ (or 0 to np (or nn), each of the two processes in this 
succession being allowed at the planar level. The effect turns out to be relatively small because ordered resonance decay widths are 
small compared to the to - tp (or f - f) mass differences. Additionally, when many channels are "open", interchannel cancellations 
result from the alternating signs of pole residues. 

** As remarked at the end of section 10, no calculation of the unnatural-parity cylinder loop integral can be made until the corres- 
ponding ordered triple-Regge couplings have been determined from the ordered unnatural-parity bootstrap. 
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Fig. 11.1. Product of ordered amplitudes contributing to the AB discontinuity of the cylinder. 

peripheral strip structure sharply confines the mass interval from which significant contributions 
arise. 

As SA.(t ) ~ oO the product in fig. 11.2 has the power behavior 

Sott(t+)+ot-(t-)-  I . 

AS 

that is to say, the leading Regge singularity in the AC--* B D  channel is a branch point at 
JAC = ~+(t+) + 0~_(t_) -- 1. The product is small for two reasons - corresponding respectively 
to the location of the branch point and to the associated discontinuity: (1) First of all, for SAC 
small the power of SA. corresponding to the Regge cut is less than that corresponding to an ordered 

~ ~ m ~.(t.) ~.(t÷) 4" (A~B,C.~'D] 

Fig. i 1.2. A reggeon loop approximation to the cylinder discontinuity depicted in fig. 11.1. 

pole. Consider the quark-line diagram associated with fig. 11.2, shown in fig. 11.3(a) in comparison 
to an ordered diagram, fig. 11.3(b). At SAc = 0 the leading power for the ordered amplitude in the 
large SAn limit is ~kj(0), where Ctk i is the leading reggeon in the (/, k) family, whereas the leading power 
for the cylinder is ~kj(0) + ct,(0) -- 1. The power difference is 1 - ~,(0), ensuring that asymptotically 
a cylinder amplitude becomes negligible compared to the corresponding planar amplitude, if 
ct,(0) < 1. (2) Even were ~it(0) close to 1, the cylinder would be weak because outside the 1OW-SA, 

J i i 

,--4 

(o) 

C'---..._.~. A 

(b) 
Fig. 11.3. (a) The quark-line diagram corresponding to fig. 11.2. (b) Aquark-line diagram for an ordered connected part, to be compared 
to (a). 
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strip the cluster-mass integrals on the right-hand side of fig. 11.2 are numerically small, corres- 
ponding to the smallness of the Regge-cut discontinuity. Smallness of these cluster-mass integrals 
is related to smallness of the peripheral strip width, which in turn is related to destructive inter- 
ference from different values of angular momentum. That is, by keeping small the nonadjacent 
channel invariants SAC and SBD in the ordered discontinuities of fig. 11.2, we are in effect evaluating 
these quantities near "backward" directions as the cluster mass attempts to grow. Factors of 
( - 1 )  J are correspondingly present. The integral over an ordered discontinuity with a fixed non- 
adjacent channel invariant is often characterized by a dimensionless parameter e 1-46, 47, 68, 69]. 
The strength of the Regge cut is proportional to 52, most estimates agreeing that 52 < 0.1. To 
summarize, in the Regge-cut model the order of magnitude of the cylinder-planar ratio at large t 
and low SAC is 

e2(~,t)~,,to)- 1, (11.5) 

assuming the energy scale to be set by the slope of leading ordered trajectories. 
Chan et al. [67, 70] have employed the Regge-cut model to explain a variety of qualitative 

experimental observations concerning charmonium decay. We may appreciate the nature of their 
considerations by examining the already-discussed parallel problem of the "strangeonium" 
decay ¢p ~ p + n. Choose the particles A and B to be K + and K - ,  with an order such that a (2, 2) 
family enters one cylinder boundary. Let particles C and D be n + and p- ,  with an order such that 
a (p, p) family exits from the other boundary. Project then on JAB = 1 and make the semilocal 
duality assumption that the smooth discontinuity given by the Regge-cut representation corres- 
ponds to an average over resonances in the AB ~ CD channel. Knowing the resonance spacing, 
the Regge-cut model thus yields J = 1 pole residues, and one factor of the q~ residue corresponds 
to the desired coupling cp ~ pn. 

According to formula (11.5), the ratio of the latter OZI-violating coupling to an allowed coupling 
is of order 

e2(~'m2) ~apt°)- 1. (!1.6) 

Since ' 2 m,p happens to be close to 1, we find the Regge-cut model of the cy!inder predicting the 
mixing angle O-(m 2) to be of the order 52. Such a statement sounds completely different from (! !.4) 
- the multiperipheral model result. Is it accidental that both models agree with experiment 
(O-(m 2) ~ 0.1 radians)? 

Relation between multiperipheral and Regge-cut models 
The q~ mass happens to lie in the transition region - on the outer fringe of the low-t strip and at 

the beginning of the high-t interval where semi-local duality gives meaning to crossed-channel 
Regge representations. Although both multiperipheral and Regge-cut models are here being 
stretched to their limits of validity, there is precedent for supposing that an overlap region exists 
where high-t and low-t approximations are simultaneously meaningful. It is furthermore the case 
that in both models the smallness of the predicted mixing angle is attributable to ( -  1) a destructive 
interference. 

The fact that the multiperipheral model yields an exponential decrease of cylinder strength 
while the Regge-cut model yields a power decrease is understandable through the strip structure 
of fig. 6.4. The former model is concerned with the strong IOW-SAB strip while the latter concerns 
itself with the weak (,--e 2) strips at low SAC and low SAt). The exponential behavior refers to the 
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transverse structure of the strong strip while the power behavior refers to the longitudinal structure 
of the weak strips. 

OZI-rule violation in 4-line connected parts 
As an example of OZI-rule violation that cannot completely be expressed through a mixing 

angle, consider the two-boundary cylinder component  M A'BcD for a reaction forbidden at the 
planar level, where particle A and only particle A has quantum numbers allowing communicat ion 
with the cylinder axis. An illustration might be A = q~, B = n °, C = n +, D = n- .  There are poles 
in all three channel invariants SA~, SAC and SAD, with three corresponding strip regions. When only 
one invariant is small and the other two large, a single strip is important  and one may use a repre- 
sentation in terms of the ordered Regge poles parallel to this strip. Roughly speaking, the only 
difference in this region from a corresponding ordered amplitude (nonvanishing in the same strip) 
is a mixing-angle factor. In our n + n -  ~ tpn ° illustration if we go to the strip where SAa is large and 
SAC is small, the leading Regge pole is p + and the ratio to the allowed amplitude re+re- ~ ~rc ° is 
just the ratio of the Regge couplings p+(S~,c) - r~+cp to P+(SAc) -- re+CO, which we expect to be of 
order e2. * The situation, however, is more complicated in the region where all three invariants 
SAB, SAC and SAD are small. 

In this central region of the Mandelstam diagram the singularity structure of M0 A'BcD is qualita- 
tively different from that of an ordered connected part such as MAncD, which has poles in only 
two of the three invariants. Crude models of this central region, based on the discontinuity formula 
(5.7), suggest that where all three strips converge the amplitude M A'BcD becomes comparable in 
magnitude to an ordered amplitude. Only when the energy is high enough to allow contributions 
from many different intermediate channels does ( -  1)J destructive interference reduce the cylinder 
magnitude [72-74]. 

12. Torus 

Cylinder corrections to the planar S matrix are expected on the basis of the two convergence 
mechanisms discussed in sections 6 and 7 to be more important than corrections involving handles. 
According to experimental observations, as described in section 4, such seems indeed to be the 
case; the most visible departures from planar regularities involve cylinder-communicating chan- 
nels. Small irregularities are nevertheless inevitable in all channels as a result of h ¢ 0 components  
of the topological expansion. This section considers the component  with one handle and one 
boundary - commonly described as a "torus" - that is expected to constitute the most significant 
h ~ 0 correction. 

As explained in section 7 such a component  will be smaller than the corresponding planar 
component  by a "statistical" factor 1/N 2, N being the average number of flavors allowed by phase 
space to be effective in intermediate states. We have interpreted the 1/N 2 factor as manifesting 
the constraint that only SU N singlet channels are allowed to flow through handles. Additionally, 
as explained in section 6, intermediate handle-traversing channels are constrained by peripheral 

* As shown by Kwiecinski [71] the mixing angle 0- (m~ is strictly-speaking relevant only to the physical points on the rho trajectory 
where ~tp = 1, 2 . . . . .  
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dynamics to be of low energy. The combination of these two suppressive mechanisms ensures 
relative smallness for the torus. 

Speaking loosely, if one associates the pomeron with the cylinder and regards a handle as an 
"internal cylinder", one may say that adding a handle is like adding an internal pomeron link. A 
connection is then recognized between the summation over many handles and Gribov's reggeon 
calculus, which is a generalization of the idea of "absorptive" correction through pomeron inser- 
tions. The weakness of pomeron couplings, on which reggeon calculus depends, is seen as a manifes- 
tation of the convergence mechanisms within the topological expansion. The connection between 
DTU and regge0n calculus has been studied by Ciafaloni, Marchesini and Veneziano 1-16]. We 
shall not venture into this arena, restricting our attention to a simpler although physically-related 
question that requires only a single handle: the torus shift of planar trajectories.* A lesson will 
emerge: The shift cannot be calculated in terms of pomeron couplings. The handle structure is 
more subtle. 

Crossed-channel torus discontinuity 
Suppose we wish to correct the ordered AB-channel Regge poles of Mo AacD by adding M ABcD. 

We assume the isospin of the AB channel not to be I = 0, so there is no communicating cylinder 
component. As usual we may think of AB poles as arising from AC and AD discontinuities. Now 
a correction to the AD discontinuity will not disturb the standard planar regularities, since this 
discontinuity is already nonzero in the ordered amplitude. Odd and even signatured trajectories, 
in particular, receive a common shift from a torus contribution to the AD discontinuity; there 
is no breaking of exchange degeneracy [75]. On the other hand, with the torus contribution to 
the AC discontinuity, exchange degeneracy is broken, so we concentrate attention on the AC 
discontinuity of M ~  BcD. 

The discontinuity formula turns out to involve two classes of terms: planar times planar and 
planar times cylinder. The former appears first in a 3-particle discontinuity, while the latter appears 
in a 2-particle discontinuity. Understanding as usual that intermediate "particles" are ordered 
clusters, we have 

discAc MAacD = Mao FED~ ® M AQrcE + M~ EDFG ® M A~cEF + M~ F,DE ® Mo AFcE 

-1- M o  BEDF @ M ~  F'EC. ( 1 2 . 1 )  

When SAC is large and s ~  is small the planar times planar terms are large in the doubly-peripheral 
strip indicated in fig. 12.1. Representing intercluster rapidity gaps by reggeons and summing over 
clusters, we are led to the approximation of fig. 12.2 for the planar times planar portion of the torus 
AC discontinuity. Applying the reasoning that led us in fig. 11.2 to conclude that both cluster 
masses there were limited leads here to the conclusion of a limited central-cluster mass. Each of 
the two end clusters in fig. 12.2 is unrestricted in mass,** however, and one cannot argue for a large 
rapidity gap between clusters. 

* Strictly-speaking, a single-handle component does not by itself shift a pole but generates a double pole at the same position. 
It may nevertheless be shown by standard renormalization considerations that the double pole is the first of an infinite correlated 
sequence of multiple poles, the pole order increasing with the number of handles and the series summing to a shifted pole: 
~ o  Ah/( J - ct) h÷l = 1/(J - ct - A). Understanding the single-handle (double pole) term thus yields the shift A. 

** Two unrestricted clusters corresponds to the statement (preceding footnote) that the JAB projection has a double pole as its leading 
Regge singularity. 
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B A B A B A B A 
Fig. 12.1. Product of tree diagrams, indicating the strips where 
the amplitude is expected to be large. Darker lines represent 
clusters. 

Fig. 12.2. Reggeon loop approximation for fig. 12.1. 

Some investigators have at this point followed the spirit of the multiperipheral ordered and 
cylinder models where reggeon links were employed for small as well as large rapidity gaps [47, 
68, 76]. Other investigators [77, 78] have invoked techniques from reggeon calculus in an effort 
to include the effect of the central cluster's merging into one of the end clusters. There is unresolved 
controversy about which approach gives the more reliable result. All investigators agree on the 
order of magnitude (see below), but the sign is in question. In any event one should not ignore 
those terms in formula (12.1) that involve the cylinder. 

The cylinder times planar contribution is indicated in fig. 12.3 and corresponds to two ordered 
clusters, each of unrestricted mass. No reliable calculation has yet been made of this contribution, 
bt/t estimates indicate that near t = SAB = 0 the cylinder times planar terms are comparable to 
the planar times planar [79]. Indeed, our experience with formula (5.8) suggests that simplification 
of the calculation may result by considering simultaneously the two sets of terms. Certainly, if 
the cylinder contribution is adequately to be evaluated, one must not forget those cylinder poles 
that precisely cancel I = 0 planar poles. 

~ A  + B ~ A  
Fig. 12.3. The cylinder times planar contribution to the crossed channel torus discontinuity. Darker lines represent clusters. 

The small magnitude of the planar times planar portion of the torus AC discontinuity follows 
partially from the smallness of the integral over the central (twisted) cluster in fig. 12.2. Characteriz- 
ing the smallness of this integral by the parameter e used to characterize the twisted cluster integral 
in fig. 11.2, the order of magnitude of the ratio ofa  torus discontinuity to a corresponding ordered 
discontinuity is estimated to be t3/N2ff. When translated into a trajectory shift, an angular momen- 
tum displacement of this same order is anticipated, which for Nef f ~ 2.5 and ~ 0.3 is indeed 
the experimentally-observed order of magn i tude -  as seen in fig. 4.1. A convincing quantitative 
calculation of the trajectory shift, however, has not yet been achieved through the crossed-channel 
discontinuity [79]. 
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Direct-channel torus discontinuity 
The shift of an AB ordered pole is in some respects easier to understand through the AB torus 

discontinuity than through the AC discontinuity [80]. The two-particle (two ordered cluster) 
discontinuity involves the four cylinder times planar terms shown in fig. 12.4.* The intermediate 
cluster E, because it attaches by itself to an isolated boundary of a cylinder, must have I = 0 and 
contain pairs of poles that tend to cancel each other, with the residual difference between the two 
shrinking as their mass increases. We have discussed how the largest difference occurs for the 
lowest-mass I = 0 particles. Thus we may approximate the E cluster, which may be thought of as 
"the handle", by a rapidly converging sequence of cylinder-shifted particles minus the corres- 
ponding planar particles. The dominant  contribution should be r / -  r/p~a,a r which, to the extent 
that r/p~a,a, is degenerate with r~, we may approximate as r/ - n. For all other physical particles 
the cylinder shift is extremely small. 

F + F + F + 

A 8 A 

Fig. 12.4. Cylinder times planar contribution to the direct channel torus discontinuity. Darker lines represent clusters. 

The link F must carry the internal quantum numbers of the AB channel (which we have agreed 
is not I = 0), and the residues of poles in both E and F links alternate in sign with J (or with charge 
conjugation). Both links, that is to say, can be shown to be "twisted" in the same sense as were the 
links in the reggeon loops of the multiperipheral cylinder model. 

Suppose we are interested in p - A 2 trajectory splitting, so  lAB = 1. The leading poles in the F 
link then have isospin 1 and appear with the relative signs n - B, A 2 - p, etc. Correspondingly, 
the lowest-mass contributions to the AB torus discontinuity carry the relative coefficients 

(~/ -  n ) ( n  - B + A2 - p). (12 .2)  

Such a superposition of intermediate states is precisely that dictated by G-parity conservation, 
which we emphasized in section 2 is not obeyed by intermediate states at the planar level. Consider, 
for example, the terms in formula (12.2) that correspond to pairs of pseudoscalar mesons: 

~/n - nn. (12.3) 

G parity allows r/n to communicate with A 2 but not with p, while the reverse is true for rcn, so the 
difference of the discontinuities contributing to A2 and p, with observance of G parity, will contain 
the combination (12.3). It can be shown that the complete structure of the torus two-particle AB 
discontinuity, including the sign alternation with charge conjugation, may be deduced from the 
G-parity requirement on states that do not communicate with the cylinder 1-80]. 

* We ignore the torus times planar terms and the planar times planar terms which enter at the 3-particle level. The latter should to 
a large extent be incorporated through our use of cylinder poles for the E cluster. 
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If one assumes that the trajectory displacement 

~A2(t) - %(0 (12.4) 

vanishes smoothly as I tl ~ ~ ,  satisfying an unsubtracted dispersion relation in t, a calculation 
of the displacement may be based on the measured partial widths for the decays A 2 -~  ~zr/, ~p, 
p ~ mr, ~zco, etc. into the two-particle channels represented in (12.2).* When such a calculation is 
performed, the lowest-threshold AB-communicating intermediate two-particle channels give a 
semi-quantitative account of the A 2 - p displacement, explaining the sign, the magnitude and 
the derivative [80]. The dominant contribution arises from the mr channel, which because it 
contributes to p and not to A 2 ,  lifts the former above the latter. 

The success of the direct-channel dispersive calculation gives empirical support to the conjecture 
that a trajectory-difference such as (12.4) should satisfy an unsubtracted dispersion relation - im- 
plying that at large negative t as well as at large positive t the trajectories smoothly approach each 
other. (Inhibition on high-mass flow through a handle may be the source of convergence.) The 
calculation of the torus through its direct-channel discontinuity is then much easier than through 
the crossed channel.** The mechanisms ensuring a small torus magnitude operate in either 
approach. 

13. Baryons and baryonium 

The success of DTU in describing mesons encourages search for a generalization. Dual models, 
the nonunitary forerunners of DTU, were early constructed for baryons with moderate success [6]. 
It was quickly realized by Rosner [81] that duality for baryons implies a new particle family 
corresponding in quark-diagram language to qq~l~l - a combination of two quarks with two anti- 
quarks. Such exotic particles would necessarily communicate strongly with baryon-antibaryon 
channels, and it was conjectured that there would be only weak coupling to the ordinary qO 
mesons. For many years the absence of experimental support for these exotics caused doubt about 
the relevance of dual models to baryons, but recently evidence has begun to accumulate [82] for 
a class of high-mass narrow resonances with zero baryon number produced in reactions where 
baryon-antibaryon combinations occur. Assuming these new states to be the long-sought Rosner 
exotics, they have tentatively been dubbed "baryonium" [83]. 

To date it has not been established that any baryonium state carries quantum numbers such 
as I = 2 that cannot be carried by a nonexotic q~l meson. Until such characteristically-exotic 
quantum numbers are established, there will remain doubt about the theoretical status of the new 
particle family. Nevertheless, the impetus to extend DTU has been increased by the recent explosion 
of baryonium candidates. There is presently a big theoretical push to find an OZI-rule generaliza- 
tion capable of explaining the stability of baryonium states through a mechanism analogous to 
that stabilizing strangeonium and charmonium [84]. 

Further experimental impetus to extend DTU comes from the observation of approximately 
exchange-degenerate patterns for certain baryon trajectories [6]. It is plausible that such regulari- 

* Unitarity relates the imaginary part of a trajectory to the width of the physical-particle states occurring on the trajectory [5]. 
** We are here assuming that it will eventually be possible to compute in the planar plus cylinder approximation the various relevant 

three-particle couplings (e.g. p - rrrc, A 2 - rtr/, etc.). Up to the present time, as emphasized at the end of section 9, there exist no ordered 
or cylinder models for unnatural-parity particles. 
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ties are a manifestation of an ordered S matrix, just as we have seen to be the case for nonexotic 
mesons. Last but far from least, there is the experimental fact that many baryon properties can be 
understood in terms of a qqq structure. It is tempting to seek an explanation through order, just 
as we did for the q~t meson properties through a sequentially-ordered S matrix. 

What should be expected from a generalization of the DTU approach described in sections 2, 
3 and 5? The central desired feature is an ordered unitary S matrix whose factorizable poles provide 
basis for a sequence of approximations that systematically approach a unitary physical S matrix. 
We expect the ordered S matrix to display special regularities - degeneracies and selection rules, 
among these being the qq meson regularities already discussed; one of the additional regularities 
should be an ordered-pole subset with qqq properties. A candidate for an ordered S matrix with 
such attributes has recently been found [-85, 86]. A somewhat related concept of order is discussed 
in ref. [-87]. 

Generalization of the sequentially-ordered S matrix 
The order introduced in section 2 assigns to each particle a predecessor and a successor; each 

particle is "connected" to two other particles. Suppose we allow any number of interparticle 
connections and try to define a unitary ordered S-matrix - acting in a Hilbert space of ordered 
channels. It turns out that most connection patterns are incompatible with unitarity. The most 
general unitarizable pattern so far found implies a spectrum of ordered particles that bears en- 
couraging resemblance to the observed spectrum of hadrons. 

Represent with a graph the connection pattern within an ordered amplitude, the labeled vertices 
of the graph corresponding to the poles (particles) of the ordered S matrix. The graph edges 
represent interparticle connections, a "tadpole" edge connecting a vertex to itself not being 
admitted. Sequentially-ordered amplitudes correspond to "ring" graphs such as shown in fig. 
13.1(a). More general connections are illustrated by (b) . . .  (e) in the same figure. We know that 
connections of type (a) are admitted by ordered unitarity. What about (b) . . .  (e)? It turns out that 
(d) is allowed but (b), (c) or (e) are not. Why? 

B B 8 C B C A B 

E F E F E D C 
Io~ (b) (c) Idl  (e) 

Fig. 13.1. Candidate amplitude graphs representing connection patterns between particles. Only graphs a and d represent connections 
admitted by ordered unitarity. 

For an amplitude to correspond to a transition between two ordered channels, the specification 
of the channel pair must determine uniquely the amplitude. The most natural and only known 
way to accomplish this end is to associate ordered channels with those graphs achieved by cutting 
amplitude graphs into two connected portions. (Looking back at section 2 the reader may verify 
the associability of sequentially-ordered channels with connected graphs cut away from ring 
graphs.) There should furthermore be a unique prescription for recombining the two channel 
graphs to form the amplitude graph. Since each vertex corresponds to a particle, the pole-fac- 
torization aspect of unitarity demands that any vertex of an amplitude graph be isolatable by a cut 
that leaves connected the remainder of the graph. This requirement immediately eliminates graphs 
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with "pendant" vertices, illustrated by fig. 13.1(b). In this example the vertex C cannot be isolated 
by a legal cut. Other aspects of unitarity eliminate many other types of graph. 

To make a long story short the only amplitude graphs so far found to be consistent with unitarity 
are those without pendant vertices that, when split in all possible ways into two connected por- 
tions, always yield channel graphs with unique "spanning trees". A spanning tree of an arbitrary 
graph is a tree graph reached by successively removing edges to eliminate cycles (closed loops), at 
each stage eliminating any vertex at which two and only two edges have a junction.* Figure 13.2 
shows the spanning trees of some graphs that can be formed by cutting the graphs of fig. 13.1. 
Notice that only the graphs in the (a) and (d) groups have unique spanning trees. These graphs 
are of the type that corresponds to ordered channels.** 

E 

(a) 

A B 

_L 
E F E 

B -F (c) 

B 

A > 
G 

F 

F E 

B 

~ (d) 

(el 

Fig. 13.2. Spanning trees for various cuts of the amplitude graphs of fig. 13. I. Only graphs a and d lead to unique spanning graphs. 

Color 
To achieve the essential objective that a pair of channel graphs be recombinable (into an 

amplitude graph) in only one possible way, it turns out that graph edges must be colored. With the 
appropriate coloring there then is a unique prescription for imbedding graphs on a spherical 
surface. Precisely three colors turn out to be required! Although the connection between DTU 

* If tadpoles are created in the process, they are to be erased, together with the connecting edge. 
** It can be shown that ordered amplitudes correspond to graphs that are reducible to rings by repetition of the following contrac- 

tions: (i) Replace by a single edge any set of edges that connect the same pair of vertices. (2) Remove 2-vertices. 
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color and QCD color is not yet understood, we have here an outstanding instance of promised 
physical illumination from DTU. Many qualitative features of the DTU approach are potentially 
understandable from QCD, but the Lagrangian approach so far gives no hint of the number of 
colors needed to describe strong interactions. The number 3 arises in DTU because within graph 
theory the 3-vertex plays a special role. 

It is natural to assume symmetry under interchange of different colors. In passing from the 
ordered S matrix to a planar S matrix (in the sense of section 2), it is expected that the color degree 
of freedom will disappear as the Hilbert space is contracted to eliminate order. This contraction 
has not been exhaustively investigated, but let us proceed to consider the spectrum of ordered 
particles assuming it to be coincident with the planar spectrum - the situation prevailing for se- 
quential ordering. 

The ordered-particle spectrum 
Analysis of ordered unitarity reveals a splitting of the ordered Hilbert space into a collection 

of noncommunicating sectors, each sector being characterized by a colored spanning-tree skeleton 
(imbedded on a planar surface) with 3-vertices only. The simplest skeletons are shown in fig. 13.3, 
the three colors being indicated by numbers 1, 2, 3. The communicating channels within a given 
sector are those whose spanning trees share the skeleton in question; communicating poles 
(particles) are naturally labeled by their sector skeleton. 

I z 31 2y3 3y,2 
• J ~ s 

I 3 I I 

2 3' "1 

r 

Id) 

I / \ 3  2 / \1 3 / \ 2  

2 I 2 3 

I 2 3 2 

tel 

Fig. 13.3. Spanning tree skeletons for the most simple sectors of the ordered Hilbert space. The three colors are indicated by the numbers 
1,2,3. 

Replacing each particle vertex in an amplitude graph by the appropriate sector skeleton, one 
achieves a graph containing only 3-vertices. Two classes of vertex occur (when the graph is imbed- 
ded on a spherical surface): those with clockwise color order (1, 2, 3) and those with counterclock- 
wise color order. Adjacent vertices can be shown to have opposite orientation, so in an amplitude 
graph there are equal numbers of each orientation. One may then assign a conserved quantum 
number + 1 to the clockwise 3-vertex, with the counterclockwise 3-vertex carrying - 1; it is natural 
to associate this conserved quantity with baryon number. We then see that ordered S-matrix 
sectors (a) and (c) in fig. 13.3 carry baryon number zero, sectors (b) and (d) carry baryon number + 1, 
while sector (e) carries baryon number +__ 2. Sectors evidently exist with indefinitely-high baryon 
number. It is natural to associate ordered particles of sector (b) with ordinary (nonexotic) baryons 
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and ordered particles of sector (a) with nonexotic mesons. Particles in sector (c) presumably corres- 
pond to baryonium, while those in (d) constitute a class of exotic baryons. 

Contact with quark language can be made by attaching a direction to each edge according to 
the orientation of the 3-vertices connected by the edge. Choosing the conventional edge direction 
to be away from the clockwise oriented vertex toward the counterclockwise-oriented vertex, we 
may, if we choose, say that the edge carries baryon number 1/3 and think of the edge as a quark.* 
The various sectors shown in fig. 13.3 might then be characterized as in fig. 13.4. Note that the 
ordered S matrix does not tolerate "single-quark" or "two-quark" sectors. All states have integer 
baryon number. (Single-quark states were eliminated by the unitarity inhibition on pendant 
vertices.) 

(o) (b) (c) (d)  ( , )  

B = O  :1:1 0 -+1 8 • :1:2 

Fig. 13.4. Characterization of the sectors of fig. 13.3 in quark diagram language. The arrows represent the flow of baryon number 1/3. 

Ordered baryonium states (type (c)) do not communicate with type (a) ordered meson states. 
There is similar absence of communication between type (d) ordered exotic baryons and type (b) 
ordered baryons. The desired extension of the OZI rule has thus been achieved. The ordered 
S matrix has furthermore generated qqq structure for (type (b)) baryons in an exchange-degenerate 
pattern, while maintaining q7:t structure for ordinary mesons.** 

Conclusion 
The future of the DTU approach at this point looks bright. Many questions remain unanswered 

but substantial portions of the quark picture have emerged as manifestations of an ordered relation- 
ship between S-matrix poles. The topological expansion based on sequential ordering has explained 
the existence and properties of the pomeron at the same time as providing a quantitative description 
of OZI-rule violations. In the most general order so far found to be compatible with unitarity, 
a hint has appeared of the necessity and sufficiency of 3 colors. There has not yet been developed 
for the general S matrix the equivalent of section 5's meson-sector topological expansion, so 
there can presently be no claim to understanding the mechanisms that may suppress corrections 
to the general planar S matrix. In particular we do not at this juncture know how, even in principle, 
to calculate the width of baryonium states. The accelerating rate of recent progress nevertheless 
makes promising the outlook for a bootstrap theory of hadrons keyed to ordered relationships. 

This progress rate foretells a short useful lifetime for our review. Ideas that have been described 
here will soon be generalized, simplified and their logical inter-relationship reorganized. Mathe- 

* Weissmann, by generalizing the considerations of section 3, has shown that flavors also behave as if carried along the directed 
edges [7]. 

** Within the qq sector all the regularities of the sequentially-ordered S matrix are preserved, even though this sector includes 
communicating ordered channels with baryon-antibaryon pairs. 



Geoffrey F. Chew and Carl Rosenzweig, Dual topological unitarization: an ordered approach to hadron theory 325 

matical tools of which we are presently unaware will shortly be brought to bear on the augmenta- 
tion of S-matrix theory by the concept of order. We accept this fate for our effort, having no choice 
in the matter. If this review succeeds in engaging the interest of a few physicists previously unaware 
or unimpressed by the DTU approach, we count our effort worthwhile. 
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